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Abstract

We develop a New-Keynesian framework that incorporates the term-structure of

financial markets and emphasizes the active role of the government and central bank’s

balance sheet size and composition. We demonstrate that the financial market segmen-

tation and the household’s endogenous portfolio reallocation are crucial features for

accurately understanding the effects of Large-Scale Asset Purchase (LSAP) programs.

Our micro-foundation based on imperfect information about expected discounted as-

set returns readily accommodates varying degrees of market segmentation across as-

set classes and maturities, based on estimatable asset demand elasticities. The central

bank’s bond purchases across maturities serve as a major determinant of the level

and slope of the term-structure, and yield-curve-control (YCC) policies that actively

manipulate long-term yields are highly effective in terms of stabilization during both

normal times and at the ZLB. However, YCC policies also increase the durations of

ZLB episodes, consequently placing the central bank in a position where the short-

term rate becomes a less useful policy tool.
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1 Introduction

In recent decades, unconventional monetary policies1 once considered unorthodox, have
become mainstream for central banks, particularly following the 2007-2008 Global Finan-
cial Crisis and the subsequent Great Recession. Faced with the constraints of the zero-
lower bound (ZLB) on short-term policy rates, policymakers turned to innovative strategies
to lower long-maturity rates, aiming to stimulate aggregate demand and alleviate recession-
ary pressures. In pursuit of these objectives, central banks dramatically expanded their bal-
ance sheets, while governments worldwide increased their debt issuance to finance higher
spending. The Covid-19 pandemic further intensified this extraordinary economic land-
scape, prompting the Federal Reserve to embark on yet another wave of unconventional
interventions as the policy rate once again reached the ZLB.2

The standard log-linearized New-Keynesian framework incorporates a single policy
rate, neglecting the term structure of interest rates and the heterogeneous returns across
multiple assets. Integrating these omitted elements is not a straightforward task, as equi-
librium typically equalizes expected returns across assets and maturities in these linearized
models.3 Consequently, any additional assets would become a fully dependent function of
the policy rate, rendering them superfluous for the examination of monetary policy.

In this paper, we develop a tractable New-Keynesian framework that incorporates the
endogenous term structure of interest rates in bond and private capital markets, allowing us
to examine the effects of alternative monetary (i.e., conventional and unconventional) and
fiscal policies. Informed by previous theoretical and empirical studies that emphasize mar-

ket segmentation across bonds of varying maturities as a crucial aspect in explaining the
effectiveness of quantitative easing programs, we offer a novel micro-foundation that en-
ables the integration of (i) financial market segmentation, (ii) the household’s endogenous
portfolio balancing across different asset classes and maturities, and (iii) the real effects of
government’s and central bank’s balance sheet sizes and compositions: all essential com-

1Examples include Quantitative Easing (QE) programs, large scale asset purchases (LSAPs) programs,
and Operation Twist (OT).

2In March 2020, the Federal Reserve (Fed) lowered its policy rate tool to a range from 0% to 0.25%. The
Fed committed to keeping interest rates low until the economy achieved full employment and maintained 2%
inflation consistently. Concurrently, the unprecedented CARES Act injected nearly $500 billion in support
of the Fed.

3This outcome arises from the usual absence of price of risk under the first-order log-linear approximation
techniques, leading to the well-known expectation hypothesis, which holds true in most log-linearized New-
Keynesian models. According to this hypothesis, long-term bond returns are simply the average of expected
future short-term rates.
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ponents for understanding the transmission channels of unconventional monetary policies.4

In the context of financial market segmentation, our framework posits that the total vol-
ume and maturity structure of the government’s bond issuance influences the equilibrium
levels of interest rates and the slope of the yield curve. In addition, the central bank’s rel-
ative bond purchases across different maturities exhibit a negative relationship with bond
yields. These outcomes align with the findings of Krishnamurthy and Vissing-Jorgensen
(2012) and Greenwood and Vayanos (2014), which underscore the short- and long-term
significance of both relative asset demand and supply across maturities in shaping the yield
curve.

We also investigate the cyclical properties of various monetary interventions in the form
of simple policy rules. By explicitly integrating the government and central bank’s balance
sheets, our model readily facilitates the study of policies aimed at controlling yields, bond
supplies, or a combination thereof at different maturities. We initially concentrate on the
implementation of a conventional policy rule for the short-term rate, examining its impact
on the entire yield curve and the economy. Subsequently, we devise a more comprehensive
yield-curve-control (YCC) policy, wherein the central bank directly manipulates the entire
yield curve of the bond market. Our framework uncovers interesting phenomena and dif-
ferences across policies, particularly relevant when the economy encounters a ZLB episode
(and thus, controlling the short-term rate is restricted). For instance, when the central bank
adheres to a conventional monetary policy for short-term rates, a decrease in the govern-
ment’s risk-free bond supply proves recessionary at the ZLB, as posited by the literature on
safe-asset shortage problems (see, for example, Caballero and Farhi (2017) and Caballero
et al. (2021)). In contrast, under the YCC policy, the central bank rapidly shifts the entire
yield curve downward, reducing the effective savings rate for households and stimulating
aggregate demand to avert the economy’s collapse.5 We discover that YCC, in general,
constitutes a more potent policy for economic stabilization and improves household wel-
fare compared to a conventional short-term rate policy.

However, the YCC policy exhibits intriguing side effects, including more protracted

4For instance, the households’ endogenous portfolio decisions play a key role in our model: a relative de-
cline in the short-term rate induces household to reallocate their savings to other assets and/or longer-maturity
bonds, diminishing the marginal effects of further policy rate changes on the household’s intertemporal con-
sumption decision and generating spillover effects relevant to the determination of other rates.

5Even under the conventional policy, a declining short-term rate lowers long-term bond yields due to the
endogenous portfolio reallocation of the household, thereby diminishing the effective savings rate. However,
this channel proves insufficient for boosting aggregate demand, especially when the economy reaches the
ZLB constraint and the conventional policy becomes inoperative.
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ZLB episodes. Actively easing long-maturity yields exerts supplementary downward pres-
sure on short-term bond returns, resulting from the household’s endogenous portfolio re-
allocation. Declining long-term rates prompt the household to withdraw its wealth from
long-term bonds and reallocate investments into: (i) short-maturity bonds, which further
depresses short-term yields, and (ii) private loan markets, thereby reducing firms’ borrow-
ing costs and subsequently consumption prices due to lower production costs.6 When the
ZLB is binding, the YCC policy disproportionately acts via the manipulation of long-term
bond yields, which imposes additional downward pressure on short-term rates and post-
pones an exit from the ZLB. Consequently, the household’s endogenous portfolio realloca-
tion generates a feedback loop between ZLB duration and the necessity for YCC policies:
YCC amplifies ZLB duration, while the economy increasingly depends on YCC’s stabiliza-
tion capacity during ZLB episodes. To the best of our knowledge, this outcome represents
a novel contribution to the literature.7

We put forth an original microfoundation for financial market segmentation, based on
imperfect information regarding asset returns. We assume a household subdivided into a
continuum of families and family members, each possessing distinct and imperfect infor-
mation sets about future asset returns, while perfect consumption insurance exists within
the household. Subsequently, and unable to extract a common signal from the diverse in-
formation sets, the household uniformly apportions aggregate savings among its members,
allowing them to allocate their share to the assets they perceive as most profitable. This
investment strategy effectively culminates in market segmentation, where cross-sectional
dispersion in each individual’s expectation of asset returns dictates the degrees of market
segmentation associated with each asset class. To simplify the aggregation problem of in-
dividual portfolio choices among members, we model differences in expected asset returns
as Fréchet-distributed shocks around the respective rationally anticipated levels of returns.8

Borrowing this aggregation technique from the international trade literature (e.g., Eaton
and Kortum (2002)), we facilitate the easy incorporation of new asset varieties and distinct
degrees of market segmentation across different assets and maturities, while providing an-

6Decreases in the aggregate price index further intensify downward pressures on the short-term policy
rate under an inflation-targeting policy rule, extending the duration of ZLB episodes.

7A parallel finding, albeit through an entirely distinct channel, is presented by Karadi and Nakov (2021).
The paper documents the QE-addiction problem based on a model incorporating financial frictions, wherein
private banks get accustomed to the central bank’s liquidity provisions, thereby diminishing their incentive to
get recapitalized without additional QE rounds. In that context, Karadi and Nakov (2021) propose a gradual
optimal exit strategy from QE programs.

8For general properties of the Fréchet distribution, see e.g., Gumbel (1958).
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alytically tractable expressions for the household’s portfolio shares as functions of relative
expected asset returns. Our formulation is highly versatile, encompassing the classic expec-

tations hypothesis as a specific case and permitting deviations due to imperfect information
and behavioral factors. A final advantage of this framework is that the demand elasticity of
each asset class serves as a sufficient statistic for its particular degree of market segmenta-
tion, making the segmented market hypothesis easy to test and estimate within the context
of our model. We estimate the bond market’s segmentation degree or its demand elasticity
based on our model structure.

Related Literature The paper contributes to several branches of the macroeconomics
and finance literature. Firstly, prior works have demonstrated the significance of macroe-
conomic factors in elucidating the behavior of the term structure of interest rates (e.g., Ang
and Piazzesi (2003), Rudebusch and Wu (2008), and Bekaert et al. (2010)).9 The models
developed within this domain typically employ an ad-hoc affine term structure (e.g., Duffie
and Kan (1996)) without micro-foundations.10 We contribute to the existing literature by
examining the term structure of interest rates in the presence of multiple asset classes (e.g.,
bonds for intertemporal smoothing and private loans for productive investments) and nom-
inal rigidities. Furthermore, explicit consideration of the government’s and central bank’s
balance sheets, along with the household’s endogenous portfolio choices across the entire
yield curve, enables a comprehensive assessment of the interconnections between business
cycle variables, financial markets, and monetary policy.

There are important prior works on the preferred-habitat based theory of the term struc-
ture of interest rates, including Modigliani and Sutch (1966), Vayanos and Vila (2021),
and Kekre et al. (2023).11 Ray (2019), based on Vayanos and Vila (2021), proposes a New-
Keynesian model that uncovers interesting relationships between monetary policy, business
cycles, and the term structure.12 Our quantitative model generate similar market segmen-
tation based on a new approach, and integrate our term structure of interest rates with real

9By examining the joint dynamics of bond yields and macroeconomic variables in a VAR setting, with
no-arbitrage as an identifying restriction, Ang and Piazzesi (2003) find models incorporating business cycle
factors yield superior forecasts compared to those relying solely on unobservable factors.

10Bekaert et al. (2010) integrate the no-arbitrage term-structure within a canonical New-Keynesian model,
maintaining the consistency between the household’s IS equation and the affine pricing kernel.

11In international macroeconomics settings, Gourinchas et al. (2022) and Greenwood et al. (2022) explore
the implications of the preferred-habitat setting in jointly determining exchange rates and the term structure
of interest rates.

12For empirical assessments of the market-segmentation hypothesis as a determinant of the term structure,
see e.g., D’Amico and King (2013) and Droste et al. (2021).
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economy as well.
Another branch of the literature (e.g., Gertler and Karadi (2011), Cúrdia and Woodford

(2011), Christensen and Krogstrup (2018, 2019), Karadi and Nakov (2021)) investigates
the relationship between the endogenous size and composition of the central bank’s balance
sheet and the implications for monetary policy. This literature offers valuable insights into
how various large-scale asset purchase programs (LSAPs) employed by central banks can
help mitigate various financial market disruptions.13 However, many of these works do not
include multiple bond maturities, focusing instead on the aggregate expansion of the central
bank balance sheet. We contribute by presenting a unified framework that describes how
central banks can manipulate their bond portfolios to control targeted rates along the yield
curve for stabilization purposes. Notably, our finding that active manipulation of the central
bank’s long-term bond holdings can improve welfare aligns with Sims and Wu (2021).14

While our examination of the effects of the zero lower bound aligns closely with prior
literature (e.g., Swanson and Williams (2014), Caballero and Farhi (2017), and Caballero et
al. (2021)), we highlight the additional advantages of actively managing the central bank’s
balance sheet (i.e., size and composition along the entire yield curve) when the economy
encounters the ZLB. To the best of our knowledge, we are among the first to depict a general
equilibrium that incorporates both the term structure of interest rates and the potential for a
binding ZLB, alongside the presence of multiple financial assets and the portfolio balance
channel.

Layout Section 2 introduces the model and derives the primary theoretical results illus-
trating how imperfect information results in market segmentation. Section 3 examines the
steady-state implications of various policies and model calibration choices. Section 4 ex-
plores the cyclical (short-run) responses of our model to distinct shocks under alternative
monetary policy regimes and economic contexts, including the ZLB. Section 5 provides
concluding remarks. Appendix contains additional figures and tables. Online Appendix A
contains detailed derivations and proofs. Online Appendix B explains our calibration and
estimation strategies. Online Appendix C derives the second-order approximation to the
welfare. In addition, we provide additional figures and corresponding explanations in our

13Gertler and Karadi (2011) underscore that (i) central banks are not constrained by their balance sheets,
and (ii) as balance sheet constraints on private intermediaries tighten during financial crises, the net benefit
from the central bank’s intermediation increases. Cúrdia and Woodford (2011) show targeted asset purchases
by central banks are effective when financial markets are highly disrupted due to some exogenous reason.

14Sims and Wu (2021) assume that a wholesale firm and fiscal authorities issue perpetuities with decaying
coupon payments.
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Supplementary Material.

2 Model

2.1 Representative Household

The representative household maximizes the following objective function:

max
{Ct+j ,Nt+j}

Et

∞∑
j=0

βj

[
log (Ct+j)−

(
η

η + 1

)(
Nt+j

N̄t+j

)1+ 1
η

]
, (1)

where Nt = (
∫ 1

0
Nt(ν)

η+1
η dν)

η
η+1 is the aggregate labor index, N(ν) is the labor supplied

to intermediate industry ν, η is the Frisch labor supply elasticity, and N̄t is the balanced
growth path population, which grows at constant gross rate GN . Ct refers to consumption
of the final good.

In each period t, the representative household can invest in f -period zero-coupon gov-
ernment bonds with f ranging from 1 to F , and also provide loans to firms.15,16 As a result,
the representative household’s period t budget constraint is expressed as follows:

Ct +
Lt

Pt

+

∑F
f=1B

H,f
t

Pt

=

∑F−1
f=0 R

f
tB

H,f+1
t−1

Pt

+
RK

t Lt−1

Pt

+

∫ 1

0

Wt(ν)Nt(ν)

Pt

dν +
Λt

Pt

,

(2)

where Lt is the amount of one-period loans to firms, with associated return RK
t determined

upon issuance. Wt(ν) is the wage paid by industry ν, and Λt includes transfers from various
sources, such as the government’s lump-sum taxation and profits of the central bank and
firms. BH,f

t ≡ Qf
t B̃

H,f
t denotes the nominal amount of dollars invested in the f -maturity

government bond paying one dollar at the terminal period t + f . Qf
t is the price of such a

bond, with Q0
t equal to one. B̃H,f

t is the amount of f -maturity bonds held by households,
and we assume that the households cannot credibly issue risk-free bonds, preventing them
from holding a non-negative quantity, B̃H,f

t ≥ 0 for all f . Rf
t is the return earned on an f -

period bond, which corresponds to the rate of bond price revaluation between two adjacent

15Alternatively, we interpret this as households purchasing one-period corporate bonds
16Banks and financial intermediaries are abstracted away in our framework, and the representative house-

hold provides direct loans to firms instead. Without any relevant intermediation frictions, the results of both
representations are equivalent.
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quarters, i.e., Rf
t = Qf

t /Q
f+1
t−1 .

The gross yield of any zero-coupon bond with maturity f is conventionally defined as
Y Df

t ≡ (Qf
t )

− 1
f , allowing us to alternatively express bond return Rf

t as

Rf
t =

(
Y Df

t

)−f

(
Y Df+1

t−1

)−(f+1)
.

2.1.1 Individual Savings

The representative household determines the optimal levels of consumption, employment,
and savings St, with the latter allocated into government bonds BH

t =
∑F

f=1B
H,f
t and firm

loans Lt, satisfying St = BH
t +Lt. To generate a downward-sloping demand curve for each

investment vehicle,17 we introduce the following mechanism: after determining the savings
level St, the household is equally divided into a [0, 1] continuum of families that differ in
their preferred savings vehicle, which can be either loans or government bonds. If a family
opts to invest in the bond market rather than providing loans, the family is further subdi-
vided into a [0, 1] measure of family members, each with a distinct preferred bond maturity
f = 1 ∼ F . We employ index m to identify a family within the continuum, and index
n to refer to one of its family members. Each family m and each member n in the bond
family m share the same amount of savings St as the household. Additionally, within the
family, perfect consumption insurance exists and no trading is permitted among members
of the same family or different families. We address the allocation problem recursively in
the subsequent manner.

Bond family Assuming that a family m selects bonds as its preferred savings vehicle, its
member n seeks to maximize the expected savings return by solving the following problem:

max
F∑

f=1

Em,n,t

[
Qt,t+1R

f−1
t+1B

H,f
m,n,t

]
s.t. BH

m,n,t ≡
F∑

f=1

BH,f
m,n,t = St, BH,f

m,n,t ≥ 0,

where Em,n,t is the expectations operator for member n in family m and Qt,t+1 denotes the
stochastic discount factor of households. Owing to the problem’s linear nature, we arrive at

17Otherwise, linearization of the model results in the perfect equalization, in equilibrium, of all expected
asset returns (including different bond maturities), which is consistent with the standard expectation hypoth-
esis (see e.g., Froot (1989)).
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a corner solution wherein member n allocates her entire share of savings to the bond with
the highest expected discounted return.18 Formally,

BH,i
m,n,t =


St , if i = argmax

1≤j≤F

{
Em,n,t

[
Qt,t+1R

j−1
t+1

]}
,

0 , otherwise.

In the benchmark rational expectations model, all members in the bond family m select
the same allocation, and the expected discounted returns Et

[
Qt,t+1R

f−1
t+1

]
for any maturity

f are equalized in equilibrium. This scenario is consistent with the expectation hypothesis

in the log-linearized economy, where long-term rates are approximated as the average of
future expected short-term rates.19 Since the short-term rate R0

t+1 is governed by the central
bank, longer yield maturities are entirely determined by conventional monetary policy in
this setting. This precludes any significant role for alternative central bank policies, such
as quantitative easing (QE), despite empirical evidence to the contrary.20

We depart from the expectations hypothesis and generate a downward-sloping demand
curve for each bond of arbitrary maturity f by imposing additional structure on the house-
hold’s portfolio allocation problem. We assume each member n of the family m has differ-
ent expectations regarding the discounted future returns of bonds. This discrepancy can be
attributed to each member possessing access to a distinct and imperfect information set (in
a manner akin to Angeletos and La’O (2013)) or simply to behavioral assumptions. Fur-
thermore, we assume that family m lacks the capacity to aggregate individual information
from its members and execute a centralized portfolio allocation based on signal extraction.
Consequently, the family opts to evenly divide the savings among its members and per-
mits them to decide on the allocation of their individual share. We assume the following
functional form for member n expectations:

Em,n,t

[
Qt,t+1R

f−1
t+1

]
= zfn,t · Et

[
Qt,t+1R

f−1
t+1

]
, ∀f = 1, . . . , F,

where operator Em,n,t represents a member-specific expectation, whereas Et denotes the

18An exception would occur if two or more bonds possess precisely the same highest expected discounted
return, in which case member n would be indifferent between allocations across these bonds. This scenario,
in general, will happen with zero probability, as will become evident in the derivations below.

19In the linearized economy, the covariance between Qt,t+1 and returns Rf−1
t+1 is omitted along with other

higher-order effects. Consequently, expected returns for each bond maturity are equalized.
20For instance, Krishnamurthy and Vissing-Jorgensen (2011) demonstrate that large-scale asset purchase

(LSAP) interventions reduce long-term interest rates.

8



rational expectations operator. zft,n is maturity-f specific shock to member n’s expectations.
Observe that, ceteris paribus, a high realization of zft,n renders member n more inclined to
save in the f -maturity bond.

For analytical tractability, we model zft,n as a Fréchet-distributed shock with location
parameter zero, scale parameter zft , and shape parameter κB, assuming it to be independent
and identically distributed across members n, maturities f , and quarters t.21 The shape pa-
rameter κB governs the volatility of these expectation shocks, with limκB→∞ V ar

(
zft,n

)
=

0. Consequently, when zft = Γ
(
1− 1

κB

)−1
22 and κB → ∞, the model converges to the

standard rational expectations case, with Em,n,t coinciding with Et. In other cases, individ-
ual expectations deviate from the rational expectation.23

We define λHB,f
t as the probability that the f -period bond offers the highest expected

discounted return for an individual n within the family. Owing to the characteristics of the
Fréchet distribution, we derive the following expression for this probability:

λHB,f
t =

zft Et

[
Qt,t+1R

f−1
t+1

]
ΦB

t

κB

, (3)

where ΦB
t ≡

[∑F
j=1

(
zjtEt

[
Qt,t+1R

j−1
t+1

])κB
] 1

κB is an aggregate index capturing the average
expected discounted return across bonds of varying maturities. In (3), it can be observed
that the demand for savings in an f -maturity bond increases when f -maturity return, Rf−1

t+1 ,
is comparatively higher than the mean bond return across all maturities, ΦB

t . Furthermore,
the scale parameter zft dictates the overall portfolio preference of households for the spe-
cific maturity f . For instance, a sudden increase in z1t amplifies the household’s demand
for the shortest term (i.e., f = 1) bond, irrespective of relative holding returns.

By aggregating across families and individual family members, we arrive at an expres-
sion representing the total holdings of the household for each f -maturity bond:

BH,f
t = λHB,f

t ·BH
t , ∀f = 1, . . . , F, (4)

21See, for example, Eaton and Kortum (2002) and Dordal i Carreras et al. (2023) for applications of the
Fréchet distribution and aggregation issues in the international trade and macroeconomics literature.

22Setting the scale parameter to zft = Γ (1− 1/κB)
−1, we obtain E(zfn,t) = 1, and the member-specific

expectations fluctuate around the rational expectation.
23Hence, our framework encompasses the aforementioned benchmark case (no-arbitrage term structure)

as a limiting case.
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where BH
t denotes the aggregate bond holding amounts for the household. Using equa-

tion (4), we derive an aggregate expression for the returns on the household’s bond portfolio
as

RHB
t+1 =

F−1∑
f=0

λHB,f+1
t Rf

t+1. (5)

Bond vs. loans family Having determined the allocation of savings across bond maturi-
ties, we now examine how a family m chooses between allocating its savings to bonds or
loans. Family m seeks to maximize savings returns from the set of possible asset classes
(i.e., bonds and loans in our model) by solving the following optimization problem:

max Em,t

[
Qt,t+1R

HB
t+1B

H
m,t

]
+ Em,t

[
Qt,t+1R

K
t+1Lm,t

]
s.t.

BH
m,t + Lm,t = St, BH

m,t ≥ 0, and Lm,t ≥ 0.

Family m assumes that if it becomes a bond family, it will adhere to the investment strategy
delineated in (3) and earn the aggregate bond returns RHB

t+1 (i.e., (5)) on its bond portfolio.
In the benchmark rational expectations environment, all families select the same allocation,
and at equilibrium, expected discounted returns Em,t

[
Qt,t+1R

HB
t+1

]
and Em,t

[
Qt,t+1R

K
t+1

]
are equalized, rendering families indifferent in their portfolio allocation. We depart from
this scenario by assuming that each family m’s expectation deviates from the rational ex-
pectation as follows:

Em,t

[
Qt,t+1R

K
t+1

]
= zKm,t · Et

[
Qt,t+1R

K
t+1

]
,

where Et represents the rational expectations and Em,t is a family m-specific expectation.
We model zKm,t as a Fréchet-distributed shock with location parameter of zero, scale pa-
rameter zKt , and shape parameter κS , assuming zKm,t to be independent and identically dis-
tributed across families m and quarters t. As before, κS controls the expectation shock’s
volatility, with limκS→∞Var

(
zKm,t

)
= 0. Consequently, when zKt = Γ (1− 1/κS)

−1 and
κS → ∞ the model converges to the standard rational expectations case, wherein Em,t

aligns with Et. Building on our previous findings, we can now aggregate the decisions of
each family m to determine the share of aggregate savings allocated to loans as

λK
t =

(
zKt Et

[
Qt,t+1R

K
t+1

]
ΦS

t

)κS

, (6)
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where ΦS
t =

[(
Et

[
Qt,t+1R

HB
t+1

])κS +
(
zKt Et

[
Qt,t+1R

K
t+1

])κS
] 1

κS is the aggregate index
capturing the average expected discounted return of bonds and loans.24 The scale parameter
zKt governs the overall portfolio preference of households for private loans. For instance, a
sudden increase in zKt raises the share of loans irrespective of the relative savings returns.

Using (6), we can now express the aggregate amount of savings allocated to bonds of
each maturity as:

BH,f
t =

(
1− λK

t

)
· λHB,f

t · St, ∀f = 1, . . . , F,

and the aggregate return on household savings as:

RS
t =

(
1− λK

t−1

)
RHB

t + λK
t−1R

K
t . (7)

Note that RS
t depends on the rates of all available assets, encompassing (i) different bond

maturities and (ii) private loans, with endogenous weights determined by the relative re-
turns of these assets. Lastly, we can rewrite the budget constraint in (2) as:

Ct +
St

Pt

=
RS

t St−1

Pt

+

∫ 1

0

Wt(ν)Nt(ν)

Pt

dν +
Λt

Pt

. (8)

It is worth noting that the representative household problem now resembles that of a con-
ventional New-Keynesian model, despite the asset variety and market segmentation intro-
duced.

Remarks on aggregation: The assumption regarding separate information sets on asset
returns, which we model as extreme type Fréchet deviations from the rational expectations
equilibrium, effectively creates market segmentation (i) between bond and loan markets,
and (ii) among bonds of different maturities. The literature also empirically supports this
result (see, for example, D’Amico and King (2013)). The shape parameters (κB, κS) con-
trol the degree of market segmentation across maturities and assets, respectively, and the
conventional expectations hypothesis framework without market segmentation is nested as
a special case of our model when κB, κS → ∞. Most notably, the nested CES structure of
our asset markets can be easily extended to accommodate a wide variety of assets and ma-
turity structures. Shape parameters (κB, κS) summarize the demand elasticity for financial

24Note that (6) implies that a family’s preference for issuing loans increases when the return on loans
RK

t+1 becomes relatively higher than that of the aggregate bond portfolio RHB
t+1 .
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products in response to movements in their expected returns, as seen in (3) and (6). These
elasticities can take distinct values across asset classes and can be easily estimated from
data to capture different degrees of market segmentation across assets and maturities. We
estimate κB in Appendix B, based on (3): the household’s bond portfolio depends on the
current maturity preference (i.e., zf ) shocks as well as relative holding returns of different
maturities bonds, with κB as the elasticity.

2.1.2 Optimality Conditions

The solution to the household’s problem in (1) subject to the budget constraint in (8) yields
the following equilibrium conditions:

(
Nt(ν)

N̄t

) 1
η

=

(
Ct

N̄t

)−1
Wt(ν)

Pt

, (9)

1 = βEt

[
RS

t+1Ct

Ct+1Πt+1

]
, (10)

where Πt+1 ≡ Pt+1

Pt
is the gross inflation rate. Note that in the Euler equation (10), the effec-

tive savings rate RS
t+1 is the reference rate for the household’s intertemporal consumption

decisions. Note that the household as a whole follows the rational expectations.

2.2 Capital Producer

There exists a representative firm that produces capital Kt and rents it to intermediate good
producers at price PK

t . The capital is produced by utilizing the final good as an investment
input, depreciates at rate δ, and there is a one-period lag for investment It to be deployed
as new capital. Consequently, the evolution of capital is defined as

Kt = (1− δ)Kt−1 + It−1.

The profits of the capital producer are given by

ΛK
t = PK

t Kt − PtIt,

where Pt denotes the price index of the final good. Solving the capital producer’s optimiza-
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tion problem with respect to It, we derive the following first-order condition:

1 = Et

[
Qt,t+1Πt+1

[
(1− δ) +

PK
t+1

Pt+1

]]
. (11)

2.3 Firms

There exists a continuum ν ∈ [0, 1] of intermediate goods, where each ν is produced by a
monopolist ν utilizing capital and labor according to the following production function:

Yt(ν) =

(
Kt(ν)

α

)α(
AtNt(ν)

1− α

)1−α

, (12)

where At = exp
(
uA
t

)
represents the aggregate technology, with uA

t = µ+uA
t−1+εAt , εAt ∼

N (0, σ2
A). We define GAt as the (gross) rate of change in At, thus GAt ≡ At

At−1
= exp(µ+

εAt ) holds true.
A representative, perfectly competitive firm aggregates all intermediate products into a

final good according to the well-known Dixit-Stiglitz aggregator, as follows:

Yt =

[∫ 1

0

Yt(ν)
ϵ−1
ϵ dν

] ϵ
ϵ−1

,

where ϵ > 1 is the elasticity of substitution between varieties. The household’s demand for
intermediate good ν is given by

Yt(ν) =

(
Pt(ν)

Pt

)−ϵ

Yt , (13)

where P (ν) represents the price of intermediate ν. The aggregate price index is given by

Pt =

[∫ 1

0

Pt(ν)
1−ϵ dν

] 1
1−ϵ

. (14)

Intermediate producers exhibit sticky prices à la Calvo (1983), resetting their prices at
the beginning of each quarter with probability 1 − θ. All price-changing firms reset their
prices to the same optimal price (in equilibrium) within a given period, denoted by P ∗

t .
This enables us to P 1−ϵ

t = (1− θ) (P ∗
t )

1−ϵ + θ (Pt−1)
1−ϵ.

Intermediate producers rent capital at price PK
t , subsequently paying PK

t Kt(ν) to the
capital producer at quarter t. As firm profits are rebated to the representative household at
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the end of every quarter, firms are financially constrained. For simplicity, we assume that
each firm ν borrows γ portion of the revenue it would generate, i.e., (1 + ζF )Pt(ν)Yt(ν)

where ζF is a production subsidy, from households. Formally, if firm ν borrows Lt(ν) =

γ(1 + ζF )Pt(ν)Yt(ν) from the household, it repays RK
t+1Lt(ν) to the household in period

t+ 1, with the rate RK
t+1 contracted at period t.

An intermediate firm ν seeks to maximize the discounted stream of profits, solving

max
∞∑
j=0

Et[Qt,t+j[(1 + ζF )Pt+j(ν)Yt+j(ν)−Wt+j(ν)Nt+j(ν)− PK
t+jKt+j(ν)

−RK
t+jLt+j−1(ν) + Lt+j(ν)]]

(15)

where Qt,t+j = βj
(

Pt+j

Pt
· Ct+j

Ct

)−1

is households’ stochastic discount factor (SDF) between
periods t and t + j, and Lt+j = γ(1 + ζF )Pt+j(ν)Yt+j(ν) for ∀j. It is important to note
that at period t + j, firm ν repays RK

t+jLt+j−1(ν) to the household, as it received a loan
amounting to Lt+j−1(ν) in the previous period t+ j − 1.

Minimizing a firm ν’s production costs with respect to labor and capital, we derive the
following demand for inputs:

Nt(ν) = (1− α)
Yt(ν)

At

(
PK
t

Pt

Wt(ν)
PtAt

)α

,
Kt(ν)

At

= α
Yt(ν)

At

(
PK
t

Pt

Wt(ν)
PtAt

)−(1−α)

. (16)

The aggregate profit of firms is rebated to the household and expressed as

ΛF
t = (1 + ζF )PtYt −

∫ 1

0

Wt(ν)Nt(ν) dν − PK
t−1Kt−1 −RK

t Lt−1 + Lt

2.4 Bond Market

The equilibrium condition in the bond market can be expressed as

BH,f
t +BG,f

t +BCB,f
t = 0, ∀f = 1, . . . , F, (17)

where BG,f
t and BCB,f

t represent ‘nominal’ bonds held by the government25 and the central
bank, respectively. We assume that both the government and the central bank are the sole

25Given our assumption that the government issues bonds across different maturities, BG,f
t ≤ 0 for all

f = 1 ∼ F .
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agents in the economy capable of issuing riskless claims and thus holding negative bond
positions. For the central bank, a negative bond position can be interpreted as permitting
interest-bearing excess reserves, as observed following the Great Recession.26 We allow the
government to issue bonds, and thereby hold negative positions in bonds of each maturity,
as risk-free assets would not exist otherwise. Specifically, our specification of technology
growth GAt and population growth GN ensures that, at the steady state, the government
maintains a non-zero (and non-explosive) amount of debt obligations and consistently acts
as the supplier of risk-free debt despite cyclical fluctuations.

By defining λG,f
t and λCB,f

t as the shares of nominal f -maturity bond holdings of the
government and the central bank, respectively, (17) can be written as

λHB,f
t BH

t + λG,f
t BG

t + λCB,f
t BCB

t = 0, ∀f = 1, . . . , F. (18)

2.5 Government

The government’s budget constraint is represented by

Gt + ζFYt +
BG

t

Pt

= Tt +
RG

t B
G
t−1

Pt

, with BG
t =

F∑
f=1

BG,f
t , RG

t =
F−1∑
f=0

λG,f+1
t−1 Rf

t , (19)

where BG
t denotes the government’s nominal bond position, Gt signifies the real govern-

ment spending, Tt represents taxes, and RG
t refers to the aggregate bond return to the gov-

ernment’s portfolio {BG,f
t−1}Ff=1, with λG,f

t being the fraction of government debt obligations
outstanding as an f -maturity bond. Formally, we have BG,f

t = λG,f
t · BG

t , ∀f = 1, . . . , F ,
where both λG,f

t and BG
t are exogenous.27 The budget constraint in (19) can be rewritten as

BG
t

Pt

=
RG

t B
G
t−1

Pt

−
[
ζGt + ζF − ζTt

]
Yt , (20)

where ζGt = Gt

Yt
and ζTt = Tt

Yt
are the government spending and taxation as shares of GDP,

respectively. Both variables, ζGt and ζTt , are also exogenous within our framework.

26For theoretical and empirical analyses of the roles of excess reserves in conjunction with the federal fund
market and interbank credit markets in general, see, for example, Frost (1971), Güntner (2015), Mattingly
and Abou-Zaid (2015), Primus (2017), and Ennis (2018).

27We abstract from the government’s optimal maturity structure problem and assume its gross bond posi-
tions and portfolios across maturities are exogenous, focusing on the central bank’s monetary policy.
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2.6 Central Bank

The profits generated by the bonds held on the central bank’s balance sheet can be expressed
as

ΛCB
t = RCB

t BCB
t−1 −BCB

t , with BCB
t =

F∑
f=1

BCB,f
t , RCB

t =
F−1∑
f=0

λCB,f+1
t−1 Rf

t , (21)

where BCB
t represents the central bank’s total nominal bond position across different matu-

rities, and RCB
t denotes the aggregate index of bond returns to the central bank’s portfolio

{BG,f
t−1}Ff=1. The fraction of the central bank’s bonds held at maturity f is given by λCB,f

t .
Formally, we have

BCB,f
t = λCB,f

t ·BCB
t , ∀f = 1, . . . , F, (22)

where BCB
t and λCB,f

t are dependent on the monetary policy rules, which will be described
shortly. The central bank’s profit at time t, i.e., ΛCB

t in (21), is transferred as a lump sum
money to the household, constituting a part of the total transfer Λt in (2).

2.7 Monetary Policy

Since the above equation (22) introduces F new equations to the model, the central bank’s
monetary policy has F degrees of freedom, which must be filled in for the model to achieve
a determinate nominal equilibrium.28 Monetary authorities may opt for one of the following
policy implementations:

1. For any f -maturity bond, establish a rule on BCB,f
t . Consequently, the f -maturity

bond’s prices (and yields) adjust.

2. For any f -maturity bond, establish a rule on its yield Y Df
t (or equivalently, its price

Qf
t ). Then, adjust the purchase amounts of the f -maturity bond BCB,f

t to accordingly
alter the yield.

3. A combination of the previous two policies at different maturities.

The first Case 1 resembles textbook money supply rules, where central banks control long-
term bond supplies rather than money. Case 2 exemplifies a policy approach often referred

28The central bank chooses its bond portfolio across different maturities {λCB,f
t }Ff=1, as well as its gross

debt position BCB
t . The central bank’s portfolio problem is typically abstracted away in the New-Keynesian

models as the explicit term structure of interest rates is usually absent.
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to as yield-curve control (YCC), which Japan implemented in 2016.29 Case 3 is a mixture
of the previous options and includes widely employed rules such as the traditional short-
term rate target of conventional monetary policy, as will be discussed below.

In this paper, we aim to study the distinct economic and welfare implications of conven-
tional and unconventional policy interventions. The specific implementation of the latter
type of policies can potentially adopt any of the three cases considered. For simplicity,
we assume that the fundamental trait characterizing unconventional interventions (e.g., QE
and LSAP) is their intent to affect asset returns along the entire yield curve (as opposed to
conventional policy focused on short-term rates). Therefore, we adopt a YCC policy rule
as the representative unconventional policy within our framework. In the following, we
formally characterize the equations describing conventional and YCC policy rules.

Conventional policy The conventional monetary policies targeting the short-term inter-
est rate align with Case 3, in which the central bank establishes a rule on Y D1

t without
manipulating longer-term bonds. We assume that the central bank maintains its (normal-
ized)30 positions for long-term bonds as follows:

R0
t+1 ≡ Y D1

t = max
{
Y D1∗

t , 1
}
,

Y D1∗
t

Y D
1 =

(
Y D1∗

t−1

Y D
1

)ρ1 (Y D1∗
t−2

Y D
1

)ρ2 [(Πt

Π̄

)γπ (Yt

Ȳt

)γy

exp
(
ε̃Y D1

t

)]1−(ρ1+ρ2)

,

BCB,f
t

AtN̄tPt

=
BCB,f

AN̄P
∀f = 2, . . . , F,

(23a)

(23b)

(23c)

where Y D1∗
t follows a standard Taylor rule targeting inflation and output deviations, with

ϵ̃Y D1

t representing a monetary policy shock. When Y D1∗
t falls below 1, the monetary policy

is constrained by the ZLB, resulting in R0
t+1 ≡ Y D1

t = 1, as implied by equation (23a).31

29On September 21, 2016, the Bank of Japan (BOJ) combined a new long-term rate target with its existing
short-term rate target to implement its own version of yield-curve-control policies. The Bank of Japan (BOJ)
set its short-term policy target, the rate paid on bank reserves, at −0.1% and capped its long-term target rate,
that on 10-year government bonds, at approximately zero. For the case of the United States, see Humpage
(2016) for the Fed’s yield-curve-control policy in the WW2 era and the policy’s benefits and costs.

30We define a normalized variable as the variable adjusted for technology, population, and price growth
(in the case of nominal variables).

31For instance, a sudden increase in the preference parameter z1t might prompt households to raise the
demand for the shortest-term bond, driving its yield towards zero. The shock potentially leads to recessionary
pressures as households reduce consumption when the ZLB is reached.
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Yield-Curve-Control policy In a yield-curve-control policy, the central bank targets the
entire yield curve by implementing a Taylor rule for each bond maturity, as follows:

Y DY CC,1
t = max

{
Y D1∗

t , 1
}
,

Y D1∗
t

Y D
1 =

(
Y D1∗

t−1

Y D
1

)ρ1 (Y D1∗
t−2

Y D
1

)ρ2
[(

Πt

Π̄

)γ1
π
(
Yt

Ȳt

)γ1
y

exp
(
ε̃Y D1

t

)]1−(ρ1+ρ2)

,

Y Df∗
t

Y D
f

=

(
Y Df∗

t−1

Y D
f

)ρ1 (
Y Df∗

t−2

Y D
f

)ρ2 [(
Πt

Π̄

)γf
π
(
Yt

Ȳt

)γf
y

exp
(
ε̃Y Df

t

)]1−(ρ1+ρ2)

,

Y DY CC,f
t = Y D

f

(
Y DCP,f

t

Y D
f

)γf
CP
[
Y Df∗

t

Y D
f

]1−γf
CP

,

(24a)

(24b)

(24c)

(24d)

for f ≥ 2, where γf
π and γf

y represent the responsiveness to inflation and output deviations
across maturities f = 1 ∼ F , respectively, with ε̃Y Df

t denoting a monetary policy shock to
a f -maturity bond yield. The term Y DCP,f

t refers to the f -maturity yield that will prevail in
a counterfactual economy under the conventional monetary policy in (23). The parameter
γf
CP ∈ [0, 1] enables some control over the influence of conventional policy targets under

our yield-curve-control regime. When γf
CP = 1, equation (24) reverts to the conventional

policy regime, while γf
CP = 0 corresponds to the pure yield-curve-control case, where the

yield for the maturity-f bond is given by:

Y DY CC,f
t = Y D

f

(
Y Df∗

t−1

Y D
f

)ρ1 (
Y Df∗

t−2

Y D
f

)ρ2 [(
Πt

Π̄

)γf
π
(
Yt

Ȳt

)γf
y

exp
(
ε̃Y Df

t

)]1−(ρ1+ρ2)

.

In this case, the central bank does not take into account concerns related to balance sheet ex-
posure for bonds with maturity f (i.e., equation (23c)). Intermediate values, 0 < γf

CP < 1,
correspond to scenarios in which the monetary authority balances intervention in the yield
curve with balance sheet composition and size. For simplicity, in the subsequent exercises,
we consider γf

CP = 0 for ∀f as the representative form of unconventional monetary policy.

2.8 Market Clearing

Using the bond market equilibrium (i.e., (17)), the total transfers to households from firms,
the central bank, capital producers, and the government are:
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Λt = PtYt − PtGt − PtIt −
∫ 1

0

Wt(ν)Nt(ν) dν −RK
t Lt−1 + Lt +BH

t −RH
t B

H
t−1 . (25)

where we defined Λt ≡ ΛF
t + ΛCB

t + ΛK
t − PtTt. By combining (25) with the house-

hold’s budget constraint (i.e., (2)), the standard aggregate market clearing condition can be
derived:

Ct +Gt + It = Yt, (26)

2.9 Aggregation

Aggregating labor demand (i.e., (16)) across firms yields:

Nt

N̄t

= (1− α)(
η

η+α)
(

Ct

AtN̄t

)−α( η
η+α)( Yt

AtN̄t

)( η
η+α)(PK

t

Pt

)α( η
η+α)

∆
η

η+1

t , (27)

where ∆t is a measure of price dispersion, recursively defined as:

∆t = (1− θ)

(
P ∗
t

Pt

)−ϵ( η+1
η+α)

+ θΠ
ϵ( η+1

η+α)
t ∆t−1. (28)

Notice from (27), that the labor Nt supporting a given (normalized) level of consumption
and output increases with price dispersion ∆t, which is a proxy for the inefficiency caused
by nominal rigidities. An increase in PK

t

Pt
raises the rental cost of capital, inducing firms to

substitute capital with labor and raising Nt. This channel is also observable in the following
aggregate capital equilibrium condition,32

Kt

At−1N̄t−1

= α(1− α)
1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α
(
PK
t

Pt

)−( η(1−α)
η+α )

∆t.

(29)
Aggregate capital Kt rises when consumption, output, or price dispersion increase and/or
the rental price of capital decreases. Thus, the above two equations emphasize the role of
firms’ substitution between capital and labor during the production stage.33

32We normalize Kt by At−1N̄t−1 as Kt is determined at t−1, while the aggregate labor Nt, consumption
Ct, and output Yt are all normalized by AtN̄t, and the rental price of capital PK

t is normalized by the nominal
price index Pt.

33The elasticity of substitution between capital and labor is 1 due to Cobb-Douglas production function.
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As the supply block (i.e., price-resetting decisions of firms, where price-resetting firms
solve the problem in (15)) resembles that of a standard New-Keynesian model,34 our focus
shifts to the demand block. The representative household satisfies the Euler equation (i.e.,
(10)), where RS

t+1 satisfies (7), λK
t satisfies (6), and λHB,f

t is given by (3).
The equilibrium condition for the household’s allocation between loans and bonds can

be expressed as:
Lt

BH
t

=
(1 + ζF )PtYt

BH
t

=
λK
t

1− λK
t

, (30)

where BH
t =

∑F
f=1B

H,f
t and Lt = (1+ ζF )

∫
Pt(ν)Yt(ν)dν = (1+ ζF )PtYt represent the

aggregate household bond and loan holdings, respectively.

2.9.1 Conventional Policy

In the case of conventional policy (i.e., (23)), the monetary authority does not manipulate
its normalized long-term maturity bond holdings; thus, BCB,f

t

AtN̄tPt
remains constant for f > 1.

Under this scenario, λHB,f
t must satisfy:

λHB,f
t = −

BG,f
t

AtN̄tPt
+ BCB,f

AN̄P

BH
t

AtN̄tPt

, ∀f > 1. (31)

2.9.2 Yield-Curve-Control Policy

In the yield-curve-control case (i.e., (24)), monetary policy affects households’ bond port-
folio across maturities {λHB,f

t }Ff=1 and the effective bond rate RHB
t through the following

relations:

λHB,f
t =

zft Et

[
Qt,t+1R

f−1
t+1

]
ΦB

t

κB

, Rf−1
t+1 =

(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f
. (32)

A change in the household’s bond portfolio across maturities {λHB,f
t }Ff=1 results in changes

in the effective bond rate of households RHB
t through (5), the loan rate RK

t through (6), the
effective savings rate RS

t through (7), consumption through the Euler equation in (10), and
other aggregate outcomes through (26), (27), (29), and (30).

34The optimal pricing decisions for firms (i.e., (15)) and the aggregation are derived in Appendix A.
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2.10 Shock Processes

We assume that both Fréchet distribution scale parameters, {zft }Ff=1 and zKt , follow AR(1)

processes, satisfying zft = ρzz
f
t−1 + εz,ft , with Var(εz,ft ) = (σz)

2, and zKt = ρKz z
K
t−1 + εz,Kt ,

with Var(εz,Kt ) = (σK
z )2.

For the government spending ratio ζGt = Gt

Yt
and revenue ratio ζTt = Tt

Yt
, we assume the

following shock processes:

ζGt =
1

1 + aG exp (−uG
t )

, ζTt =
1

1 + aT exp (−uT
t )

. (33)

where aG and aT are constants, and uG
t and uT

t follow standard AR(1) processes, given as
uG
t = ρGu

G
t−1 + εGt , uT

t = ρTu
T
t−1 + εTt , with εGt and εTt being i.i.d shocks.

Since the government’s bond shares across maturities {λG,f
t }Ff=1 are exogenously given,

we specify their processes as follows:

λG,1
t =

1

1 +
F∑
l=2

aB,l exp
(
ũB,l
t

) , λG,f
t =

aB,f exp
(
ũB,f
t

)
1 +

F∑
l=2

aB,l exp
(
ũB,l
t

) , ∀f > 1, (34)

where aB,f , ∀f > 1 are constants. When F is large, we reduce the number of independent
shocks to J ≤ F by assuming

ũB,f
t =

J∑
j=2

τBfju
B,j
t , (35)

where uB,j
t follows an independent AR(1) process and τBfj is a constant, for ∀j, f . Similarly,

we can also reduce the state-space of shocks in the yield-curve-control regime by assuming
that monetary policy shocks {ε̃Y Df

t } to different maturities ∀f can be represented as linear
combinations of several factors, as35

ε̃Y Df

t =
L∑
l=1

τY D
f,l εY Dl

t , (36)

where τY D
f,l , ∀l, f are constants, εY Dl

t are i.i.d. shocks, and L ≤ F . Figure 1.2 in Appendix

35In estimating ρB and σB,j in (35), we employ the principal component analysis (PCA) on the time-series
data of government bond portfolio shares, focusing on the 7 most prominent components.

21



provides a graphical illustration of the model. All other equilibrium conditions are provided
in Online Appendix A.

3 Steady-State (Long-Run) Analysis

3.1 Steady-State Relations

At the steady state, the central bank chooses the level of holdings for the f -maturity bond,
i.e., BCB,f = λCB,fBCB. We assume that the total bond holding of the central bank, BCB,
is a ζCB fraction of the total government bond holding BG, i.e., BCB = ζCBBG.36 Given{
λCB,f

}F
f=1

, the steady-state relation in the Treasury market (i.e., (18)) can be expressed
as:

λHB,f =
λG,f + λCB,fζCB

1 + ζCB
.

Hence, the steady-state household’s bond portfolio shares across maturities, {λHB,f}Ff=1,
are determined by exogenous parameters, {λG,f , λCB,f}Ff=1 and ζCB.

In the steady state, the government’s budget constraint, as represented by equation (20),
can be expressed as:

BG

AN̄P
= −

(
1− RG

Π ·GA ·GN

)−1 [
ζG + ζF − ζT

] Y

AN̄
.

Given the normalized output level Y
AN̄

and a positive primary deficit ratio ζG+ζF −ζT > 0,
an increase in the interest rate on government debt, RG, results in a higher volume of bond
issuance, |BG|, (since BG < 0), and a higher debt-to-output ratio. This occurs because the
government must pay more in the form of interest from its own debt position37.

The remaining steady-state relationships and procedures for characterizing these con-
ditions are detailed in Online Appendix A.1.3.

36Given that BG < 0 and BCB > 0 in the steady state, it follows that ζCB < 0.
37In order to sustain a positive primary deficit in the steady state, ζG+ζF−ζT > 0, through non-explosive

government bond issuance, we require RG < Π ·GA ·GN . This condition is satisfied under our calibration.
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3.2 Results

3.2.1 Model Calibration

We utilize the publicly available data on (i) treasury yields, (ii) Federal Reserve’s holdings
of the treasury bonds spanning from December 2002 to June 2007, and (iii) U.S. Treasury’s
outstanding bonds from January 1990 to January 2007,38,39 in calibrating the term-structure
parameters of the model. We set F = 120 to account for maturities up to 30 years (i.e., 120
quarters). Parameter values are summarized in Table 1.2 in Appendix. Standard macroeco-
nomic parameters are calibrated according to values widely accepted in the literature.

Recall that zfn,t shock, governing the household’s portfolio demand for maturity-f bonds,
follows a Fréchet distribution with zft and κB as scale and shape parameters, respectively.
Similarly, zKm,t affects the household’s loan investment demand, and follows a Fréchet with
zKt and κS as scale and shape parameters. Our calibration strategy is to use the slope of the
steady state yield curve to calibrate {zft }Ff=1 and its level to calibrate zK given (κB, κS).

Finally, we use γ = 3, which is an upper bound for the levels we observe for advanced
economies’ private debt to GDP ratio.

Shape parameters We use Fréchet shape parameters κB = 10, which we estimate based
on the macro data with our bond portfolio equation (3) in Appendix B, and κS = 6 based
on Kekre and Lenel (2023).40 Using κB = 10 and κS = 6, the scale parameters {zf}Ff=1 are
calibrated to match the yield curve’s shape (i.e., relative yields across different maturities),
while the scale parameter zK is calibrated to match the model’s steady-state return on the
household’s bond portfolio, RHB. The precise calibration procedure for {zf}Ff=1 and zK is
outlined in Appendix B.1. Under our calibration, the level of untargeted RK at the steady
state is 8.12%, which is close to the average Moody’s Seasoned BAA Corporate Bond Yield
during 1990-2007, 7.88%.

Figure 1 displays the bond shares across maturities of households, government, and cen-
tral bank, and the resulting yield curve, where the calibrated zK and {zf}Ff=1 are reported
in Table 1.1 and Figure 1.1. It is noteworthy that z1 = 1 is particularly large compared to
zf for f ≥ 2, as the shortest yield has historically been low relative to longer-term yields.

38When data on yields are missing, we employ interpolation to generate a smooth yield curve.
39https://fiscaldata.treasury.gov/datasets/monthly-statement-public-debt
40Kekre and Lenel (2023) express the bond convenience yield, defined as private safe rate minus the US

Tbill rate, as a function of demand shocks and bond supplies. The convenience yield falls with the bond sup-
ply, with inverse elasticity as coefficient. In this environment, they use the Federal Reserve’s announcement
of the increase of dollar swap lines (e.g., 2-weeks period) to estimate the elasticity, which is 6.
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This discrepancy may account for the safety and/or liquidity premium of short-term bonds
extensively documented in the literature, including Krishnamurthy and Vissing-Jorgensen
(2012) and Caballero and Farhi (2017).
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Figure 1: Steady-state bond shares of different entities, with the yield curve

3.2.2 Government’s Supply and Central Bank’s Demand for Bonds

We now study the impact of variations in the government’s debt structure across maturities,
captured by the government’s Treasury issuance shares {λG,f}Ff=1, on the steady-state yield
curve. Figure 2 presents these variations,41 with the left panel illustrating alternative debt
issuance arrangements across maturities, and the right panel displaying the corresponding
changes in the steady-state yield curve. The model generates a positive correlation between
yields and the relative supply portfolio (i.e., λG,f ), consistent with the literature.42 A higher
issuance of bonds of a given maturity raises the yield of those bonds. This effect not only
pertains to the targeted bond maturity but also influences the overall equilibrium returns
of both Treasury and private loan markets through the household’s portfolio rebalancing.
These changes also impact the government’s gross bond issuance in general equilibrium.

41In Figure 2, dashed and dotted lines corresponds to higher issuance of long-term compared to the bench-
mark solid line. The shift in portfolio shares is arbitrary for the illustration purposes.

42Krishnamurthy and Vissing-Jorgensen (2012) find a higher debt-to-GDP ratio reduces the credit spreads,
with the effect becoming more pronounced for longer maturities. Similarly, Greenwood and Vayanos (2014)
find a positive correlation between the supply of long-term bonds relative to short-term bonds and the term
spread, as illustrated in Figure 2.
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Figure 3: Variations in central bank’s bond portfolio across maturities

Figure 3 depicts the alternative scenario in which the central bank modifies the com-
position of its bond portfolio.43 The central bank’s relative purchase of a given maturity is
negatively correlated with its yield, consistent with the literature suggesting that the central
bank’s bond purchases can act as an additional monetary accommodation shock in segre-
gated markets, e.g., Ray (2019) and Droste et al. (2021).44 Our specification accommodates

43In Figure 3, dashed and dotted lines corresponds to higher purchases of long-term bonds compared with
the benchmark solid line. The shift in portfolio shares is arbitrary for the illustration purposes.

44Krishnamurthy and Vissing-Jorgensen (2011) document that QE2, which primarily focused on treasury
bonds, exerted a disproportionate impact on Treasuries and Agencies compared to mortgage-backed securities
and corporate bonds. D’Amico and King (2013) identify stock and flow effects of QE programs on Treasury
yields, supporting a view of imperfect substitution within the Treasury market.
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integrated bond markets, wherein the household freely selects her bond portfolio, subject
to allocation shocks distributed according to a Fréchet distribution, and generates a similar
implication at the steady state.

3.2.3 Comparative Statics with Deficit Ratio
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Figure 4: Variations in deficit ratio ζF + ζG − ζT

Figures 4 present comparative statics with the deficit ratio ζF + ζG − ζT . A higher deficit
ratio can possibly be sustained only if the following conditions are satisfied: (i) the govern-
ment issues more bonds, (ii) their effective bond rate RG decreases, or (iii) output declines,
thereby reducing total nominal deficit expenditure. We first examine the first case and ob-
serve that it is unsustainable in the long run: if the government issues more debt to finance
a higher deficit (for a given output level), the government’s effective return on bonds RG

increases (due to the supply effect described in Section 3.2.2), necessitating the issuance
of even more debts to finance their additional interest costs. This process continues indefi-
nitely, further pushing up RG. It turns out that the second and third cases operate jointly: a
higher deficit ratio reduces output, consumption, and capital, reducing the nominal deficit
amount and the government’s bond issuance, and depressing bond return RG. The loan rate
RK remains relatively stable, and the credit spread rK − rHB increases accordingly. No-
tably, our finding that the debt-to-GDP ratio BG

Y
declines, while the entire yield curve shifts

downward in response to an increase in the deficit ratio, aligns with previous literature.45

45Laubach (2009) empirically determined that a 1% point increase in the projected debt-to-GDP ratio is
estimated to raise long-term interest rates by approximately 3-4 basis points.
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We provide other relevant comparative statics results in Supplementary Material.

4 Short-Run Analysis

4.1 Log-linearization

We now provide the solution to the dynamic model under log-linear approximation. Lower-
case letters represent normalized variables,46 while hats represent log-deviations from the
steady state levels. Owing to the complexity of the system, we discuss only a few key equi-
librium equations in this section and delegate the comprehensive derivations and remaining
equations to Online Appendix A.

Upon linearizing the Euler equation (i.e., equation (10)), the standard dynamic IS equa-
tion emerges, featuring the effective savings rate r̂St+1 of the household:

ĉt = Et

[
ĉt+1 −

(
r̂St+1 − π̂t+1

)]
, (37)

where r̂St can be derived from equation (7) as

r̂St =
λK
(
RK −RHB

)
RS

λ̂K
t−1 +

(1− λK)RHB

RS
r̂HB
t +

λKRK

RS
r̂Kt . (38)

We observe that r̂St depends on the household’s effective bond rate r̂HB
t , the loan rate r̂Kt ,

and the share of savings channeled into firms as loans, λ̂K
t−1. The last λ̂K

t−1 term is capturing
the portfolio relocation effect across asset classes (i.e., bonds and loans). Given λ̂K

t−1 is an
endogenous variable dependent on the relative returns between bonds, r̂HB

t , and loans, r̂Kt ,
we characterize r̂HB

t by linearizing (5) and obtain:

r̂HB
t =

F∑
f=1

λHB,f
(
Y Df−1

)−(f−1)

RHB (Y Df )−f

[
λ̂HB,f
t−1 − (f − 1) · ŷd

f−1

t + f · ŷd
f

t−1

]
, (39)

where r̂HB
t relies on yields in the previous quarter {ŷd

f

t−1}Ff=1 as well as the current yields

{ŷd
f−1

t }Ff=1, because the holding return of an f -maturity bond is determined by its quarter-
to-quarter price change and, equivalently, yields. The term r̂HB

t in equation (39) also de-
pends on {λ̂HB,f

t−1 }Ff=1, which are the shares of household bond savings allocated to each

46For example, we define kt ≡ Kt

At−1N̄t−1
, yt ≡ Yt

AtN̄t
, ct ≡ Ct

AtN̄t
, nt ≡ Nt

N̄t
, pKt ≡ PK

t

Pt
.
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bond maturity, and capture the effect of endogenous portfolio relocation across maturities.
To further examine the determinants of portfolio relocation, we linearize the expression for
the household’s optimal bond portfolio (i.e., (3)) and express the bond shares {λ̂HB,f

t−1 }Ff=1

as functions of past {ŷd
f

t−1}Ff=1 and current {ŷd
f−1

t }Ff=1 yields. Formally, this can be writ-
ten as:

λ̂HB,f
t−1 = κBEt−1

[
ẑft−1 − π̂t + ĉt−1 − ĉt − (f − 1) · ŷd

f−1

t + f · ŷd
f

t−1 − ϕ̂B
t−1

]
, (40)

where ϕ̂B
t contains {ŷd

f−1

t , ŷd
f

t−1}Ff=1, along with other aggregate variables. By substitut-
ing the expression in (40) into (39), we can represent the household’s effective bond rate as
a function of yields along the term structure.

The relations between r̂Kt and λK
t is characterized by linearizing the household’s opti-

mal portfolio between the bond and the loan markets (i.e., (6)), which is expressed as

λ̂K
t = κS

(
1− λK

) (
ẑKt + Et

[
r̂Kt+1 − r̂HB

t+1

])
,

where rises in ẑKt and the expected spread between the loan and the bond returns Et[r̂
K
t+1 −

r̂HB
t+1 ] raise the share λ̂K

t of savings allocated to firms as loans. From (38), it can be noted
that r̂Kt+1 directly influences the effective savings rate r̂St+1, thereby altering the consumption
dynamics through the households’ intertemporal substitution channel (i.e., (37)). Addition-
ally, a change in r̂Kt+1 leads to a change in λK

t , which affects the loan issuance Lt, and thus
the output from (30), which in turn impacts aggregate labor (i.e., (27)), and the capital (i.e.,
(29)) aggregation.

4.2 Welfare

In order to compare welfare across various policy regimes, we follow the previous literature
(e.g., Woodford (2003) and Coibion et al. (2012)) and calculate a second-order approxima-
tion to the household utility function, which we summarize in Proposition 1.

Proposition 1 A 2nd-order approximation to the expected per-period welfare of the house-

hold is given by

EUt − ŪF = Ω0 + ΩnVar(n̂t) + ΩπVar(π̂t) + t.i.p + h.o.t,

where Ω0, Ωn, and Ωπ are provided in (C.38) in Online Appendix C, and ŪF represents the
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efficient (flexible-price) steady-state utility of the household, around which our approxima-

tion is centered.47

The term Ω0 < 0 arises under our positive steady-state inflation due to a first-order welfare
loss at the steady-state allocation relative to the efficient (i.e., flexible-price) steady-state.
Given that we have positive trend inflation, this term can be incorporated into the t.i.p. The
coefficients Ωn > 0 and Ωπ > 0 associated with the variance terms of labor and inflation
gaps, respectively, capture the disutility of business cycle fluctuations.

This welfare characterization proves valuable for conducting comparisons across mul-
tiple monetary policy regimes: (i) conventional policy, (ii) yield-curve-control policy, and
(iii) mixed policy. The mixed policy regime is characterized by the central bank implement-
ing the conventional policy outside the zero lower bound (ZLB), and yield-curve-control
when the ZLB binds. We further consider this last case as it more closely mirrors the policy
approach adopted by the majority of central banks in practice.

4.3 Results

4.3.1 Impulse-Response without the ZLB

First, we analyze the impulse-responses to various shocks when the economy does not enter
the ZLB. The shocks considered include z1t and zKt ,48 representing household preferences
for bonds and loans, respectively, and εTt (i.e.,fiscal or tax shock). Graphs for other shocks
are included in Supplementary Material.

Short-term bond preference shock, z1t : Figure 5a showcases the impulse-responses to
the z1t shock, which influences the household’s portfolio demand for the bond of the shortest
maturity. The dashed lines illustrate the impulse responses under the conventional mone-
tary policy, while the solid lines depict those under the yield-curve-control regime.

47The acronyms t.i.p. and h.o.t. denote terms independent of policy and higher-order terms, respectively.
48For z1t and zKt shocks, we express the magnitude of initial shocks in terms of deviation from the steady

state values, instead of multiple of their standard deviations, as those standard deviations are set to be small.
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(a) z1t shock
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Figure 5: Impulse response to z1t and zKt without ZLB

In a conventional policy setting, an increase in z1t is associated with a higher household
portfolio demand for short-maturity bonds. This results in a decline in the short rate, which
subsequently reduces returns on bonds of other maturities and loans, as well as the wage.49

As households re-optimize their portfolio choices and firms substitute between capital and
labor, inflation drops. This leads to a drop in output as the labor supply diminishes due to
the declining wage. Although the initial monetary policy response aims to boost aggregate
demand via consumption and investment, it is insufficient to prevent a fall in output. Under
our calibration, a one standard deviation increase in z1t reduces output by 3− 4%.

The yield-curve-control policy effectively insulates the economy from a z1t shock. The
rationale is straightforward: as z1t shocks affect the economy primarily by distorting house-
holds’ bond-portfolio decisions in the segmented asset markets (as captured by κB, κS <

∞), the central bank can mitigate this distortion by adjusting its own bond portfolios. With
a positive z1t shock, the central bank prevents the yield curve from shifting downwards by
exerting upward pressure on the effective bond market return of households. This interven-
tion raises both the loan rates and wages (i.e., factor prices), and inflation remains stable as
a result. Consequently, labor supply and output experience minimal changes.

In this specific context, a positive z1t shock can be interpreted more broadly as a special
case of bond market disruptions, such as a rise in the degree of flight to safety or liquidity, as

49That the household’s endogenous portfolio choice is now a function of relative rates of different assets
is crucial for generating this phenomenon. For instance, if the household’s portfolio is fixed, a positive z1t
shock would cause the loan rate to rise as the household’s loan investment decreases.
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the shortest-maturity bond (e.g., federal fund market) features the highest degrees of safety
and liquidity. Under the conventional policy, this shock generates an endogenous recession,
while a yield-curve-control regime allows the central bank to actively manipulate the entire
term structure and achieve near-perfect stabilization.

Loan preference shock, zKt : Figure 5b displays the impulse-responses to the zKt shock.
A positive shock in zKt prompts the household to invest more to the firms via loans, reducing
the capital return and increasing aggregate capital. Consequently, output and inflation rise,
with the central bank raising the policy rate. As previously observed, a yield-curve-control
regime proves to be more effective for stabilization.

Tax Shock, εTt : Figure 6 displays the impulse-responses to a εTt shock, which increases
the government’s tax revenues. Under the conventional policy, an upward shift in εTt leads
to a reduced issuance of risk-free bonds by the government. This causes a decline in bond
and loan returns, and factor prices (i.e., wages, and inflation), through the same channels
of the household’s endogenous portfolio reallocation and firms’ input substitution as pre-
viously discussed. Under our calibration, the conventional monetary policy response is not
sufficient in counteracting the negative effects of a decrease in bond issuance on output.50

The yield-curve-control policy achieves better stabilization with a significantly smaller
movement in the short-term yield. As the entire yield curve shifts downward in response to
the shock, smaller adjustments of each individual maturity are required to attain a similar
reduction in the effective household savings rate rSt+1, which boosts aggregate consumption
and mitigates the negative impacts of the lower bond issuance.

4.3.2 Impulse-Response at the ZLB

In this section, we display the impulse-responses to various shocks when monetary policy is
constrained at the ZLB. To enable each structural shock to independently push the economy
into the ZLB from its initial steady-state (and for enhanced graphical representation), we
calibrate the size of the shocks to very large levels. It is important to note that, in reality,
shocks of this magnitude are highly improbable.

50Note that our model is not Ricadian: due to the segmented markets of bonds and loans, we have a direct
effect of fiscal shocks on the business cycle throught their impacts on the government’s bond issuance.
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Figure 6: Impulse-response to εTt shock without ZLB

Short-term bond preference shock, z1t : Figure 7a displays the impulse-responses to a
z1t shock that influences the household’s portfolio demand for the shortest maturity bond.
The dashed lines illustrate the impulse-responses under the conventional monetary policy
framework, while the solid lines depict the impulse-responses under the yield-curve-control
setting. Figure 7a exhibits similar behavior to Figure 5a (i.e., the case without ZLB), with
the exception of the short-term rate being constrained at the ZLB for several quarters.

Yield-curve-controls achieve nearly perfect stabilization, as demonstrated in Figure 5a.
However, it is important to note that this policy results in a more extended ZLB duration
compared to the conventional policy. When the economy enters a ZLB episode under the
yield-curve-control regime, the central bank increases its purchase of long-term bonds, con-
sequently lowering long-term yields. This action exerts additional downward pressures on
short-term yields and the private loan rates in the household’s portfolio problem, causing
the ZLB constraint to bind for a longer duration. In our calibration, this endogenous portfo-
lio effect outweighs the additional stabilization offered by the yield-curve-control regime,
which (for a fixed portfolio allocation) would tend to facilitate the economy’s exit from the
ZLB sooner.
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In sum, although a yield-curve-control policy aids in insulating the economy from var-
ious shocks, it generates extended ZLB episodes when the short-term rate becomes con-
strained. As a result, unconventional policies gain increased importance for economic sta-
bilization, and the central bank relies more heavily on them to mitigate the adverse effects
of additional shocks.51
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Figure 7: Impulse response to z1t and zKt with ZLB

Loan preference shock, zKt : Figure 7b depicts the impulse-responses to a zKt shock at
the ZLB. A sizable negative shock to zKt induces the households to invest less in private
loans, and rebalance their portfolio toward bond markets. Consequently, bond rates decline,
and the policy rate becomes constrained by the ZLB. Output, capital, inflation, and the loan
rates all drop in response. The yield-curve-control policy effectively stabilizes the economy
while generating a longer ZLB episode in a similar way to Figure 7a.

Tax shock, εTt : Figure 8 depicts the impulse-responses to a positive εTt shock, resulting
in increased tax revenues. As in Figure 6, the economy experiences a recession under the
conventional policy. Following a positive tax shock, the government significantly reduces
its bond issuance, driving the economy into a ZLB recession. In turn, output, capital, infla-
tion, and capital returns all decline in response. This experiment underscores the stabilizing
role of the supply of safe bonds at the ZLB, when markets are segmented so that those safe

51In Karadi and Nakov (2021), quantitative easing (QE) policies effectively stabilize financial disruptions
within the banking system, even if this comes at the cost of banks becoming increasingly reliant on the power
of QEs. Despite the absence of explicit roles of banks in our model, it exhibits the similar characteristics.
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bonds play special roles, consistent with previous findings including Caballero and Farhi
(2017) and Caballero et al. (2021). Under the yield-curve-control regime, the central bank
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Figure 8: Impulse-response to εTt shock with ZLB

lowers the entire yield curve and reduces the household’s effective savings rate. This action
stimulates aggregate demand, causing output and capital to increase in response. Inflation
and capital returns decrease less than in the conventional policy case. It is important to note
that, in this scenario as well, yield-curve-control generates a longer ZLB episode compared
to conventional policy, primarily due to the endogenous portfolio choices of households.

4.3.3 Policy Comparison

Based on the welfare criterion in Proposition 1, we now compare various monetary pol-
icy regimes. As detailed in Section 4.2, we examine the following policy frameworks: (i)
conventional policy (i.e., (23)), (ii) yield-curve-control policy (i.e., (24)), and (iii) mixed
policy, wherein the central bank implements yield-curve-control exclusively when the pol-
icy rate reaches the ZLB.52 In the context of these three distinct monetary policy regimes,

52Upon the economy’s departure from the ZLB, the central bank instantly changes its holdings of f ≥ 2
bonds to its steady-state holding levels. This is different from the approach of Karadi and Nakov (2021), who
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we compute the following metrics: (i) ex-ante per-period welfare, (ii) mean and median
ZLB duration, and (iii) frequency with which the economy resides at the ZLB.

Conventional Yield-Curve-Control Mixed Policy
Mean ZLB duration 4.5533 quarters 6.2103 quarters 5.5974 quarters

Median ZLB duration 3 quarters 3 quarters 2 quarters
ZLB frequency 15.9596% 13.4242% 17.4141%

Welfare −1.393% −1.2424% −1.3662%

Table 1: Policy comparisons

The results presented in Table 1 can be summarized as follows: (i) in comparison to the
conventional policy, both yield-curve-control and mixed policies enhance welfare by 0.16
and 0.03 percentage points, respectively; (ii) the yield-curve-control policy extends ZLB
episodes, exhibiting a longer spell duration (i.e., 6.2 quarters) relative to the conventional
policy (i.e., 4.6 quarters), and (iii) the mixed policy attains the ZLB spell and welfare, both
between levels implied by the conventional and yield-curve-control policies.

The mixed policy has better stabilization at the ZLB than the conventional policy, as
it employs the yield-curve-control policy during the ZLB. While this effect can lower the
ZLB duration compared to the conventional policy, it might extend the ZLB spell as well53

from the household’s portfolio rebalancing channel as detailed in Section 4.3.2. In contrast
to the mixed policy, yield-curve-controls enable the central bank to manipulate the entire
yield curve even beyond ZLB periods. When confronted with adverse shocks, yield-curve-
control reduces long rates even prior to the economy’s entry into the ZLB, propping up the
aggregate demand and thereby lowering the probability to actually enter the ZLB, i.e., ZLB
frequency. However, it imposes strongest downward pressures on the short rates, leading
to the longest average ZLB spell.54

show the optimality of a gradual exit from quantitative easing (QE) policies, as banks in their model possess
diminished incentives to recapitalize without supplementary QE policies.

53As we observe, the mixed policy generates higher mean ZLB duration and lower median ZLB duration,
compared with the conventional policy.

54Note that those statistics in Table 1 are ex-ante, i.e., all kinds of shocks can potentially hit the economy.
For each specific shock, ZLB duration and frequency might feature different shock-dependent patterns under
different policy regimes.
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5 Conclusion

This paper presents a New-Keynesian model that integrates the term structure of financial
markets, as well as the size and maturity structure of the government’s and central bank’s
balance sheets, as active elements that influence the business cycle. We demonstrate that
the market segmentation across asset classes and maturities, in conjunction with the house-
hold’s endogenous portfolio reallocation channel, are two essential components for com-
prehending the functioning of unconventional monetary policy. To this end, we develop a
model in which the asset market segmentation arises due to incomplete information about
asset returns, resulting in an equilibrium term structure that deviates from the expectation
hypothesis usually found in standard models.

We indicate that the government’s issuance and the central bank’s purchase of different
bond maturities serve as two primary determinants of the yield curve’s level and slope. Ad-
ditionally, the government’s issuance of risk-free bonds stimulates the economy when con-
ventional monetary policy is constrained by the ZLB, as documented in previous research
on the “safe-asset shortage problems”. We also examine various monetary policy regimes,
revealing that yield-curve-control (YCC) interventions —where the central bank actively
manipulates the entire yield curve— provide greater stabilization than conventional policy,
both during normal periods and ZLB episodes. However, YCC policy exhibits intriguing
side effects, as it increases the duration of ZLB episodes. This outcome stems from the
portfolio balancing channel: by easing long-term rates, the central bank indirectly applies
additional downward pressure on short-term rates by inducing households to endogenously
rebalance their portfolios towards shorter maturities. Consequently, unconventional poli-
cies become addictive in the end: central banks rely on them as the most potent tools at the
ZLB, yet simultaneously perpetuate the ZLB conditions that render the conventional policy
ineffective.

We believe that our model will be valuable for future research investigating the effects
of quantitative tightening policies resulting from recent episodes of high inflation. Further-
more, our model is well-suited for studying the political economy implications and risks to
taxpayers arising from the expansion of the central bank’s balance sheet.55 Lastly, we aim
to extend our framework to the international macro literature, revisiting the topics of global
imbalance issues (e.g., Caballero et al. (2008, 2021)) and monetary cycles (e.g., Miranda-

55For instance, Karadi and Nakov (2021) introduced a small quadratic efficiency cost to QE policies as
a reduced-form proxy for un-modeled distortions and political costs associated with maintaining a positive
central bank balance sheet.
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Agrippino and Rey (2021)) with the incorporation of endogenous fluctuations in the term
structure of interest rates.
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Appendix Tables and Figures

1 Calibration

Calibrated steady-state parameters
{zf}Ff=1 See Figure 1.1 Bond maturity scale (mean) parameters

zK 1.0089 Capital scale (mean) parameter
C
AN̄

9.0112 Normalized consumption
Y
AN̄

16.3315 Normalized output
K
AN̄

192.6312 Normalized capital
C
Y

0.5518 Consumption per GDP
K
Y

11.7951 Capital per GDP
PK

P
0.0335 Normalized rental price of capital

λHB,f See Figure 1 Household’s bond portfolio
λK 0.5322 Household’s loan share out of total savings
RK 1.0203 Household’s loan rates (quarterly)
Y Df See Figure 1 Equilibrium yield curve

Table 1.1: Steady-state values with parameters in Table 1.2
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Figure 1.1: Calibrated scale parameters of the Fréchet distribution, {zf}Ff=1
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Households
(β, η) (0.998, 1) Discount factor and Frisch labor elasticity
GN 1.00275 Population growth rate

Intermediate good firms
µ 0.00375 Technology growth rate
γL 3 Loan-to-GDP ratio
α 0.4 Capital income share
ϵ 10 Elasticity of substitution between differentiated goods
θ 0.45 Calvo price stickiness parameter
σA 0.00225 Standard deviation of technology shock
δ 0.025 Capital depreciation rate

Term structure
κS 6 Capital shape parameter: Kekre and Lenel (2023)

(ρz, ρ
K
z ) (0.9, 0.9) Autoregressive coefficient: zft and zKt

(σz, σ
K
z ) 10−8 Standard deviation: zft and zKt

Government
ζF 0.1111 Government’s optimal subsidy to firms
ζG 0.0789 Government expenditure per GDP
aG 11.6761 Government expenditure coefficient

ζF + ζG − ζT 0.017 Government deficit per GDP
ζT 0.1730 Government tax revenue per GDP

(ρG, ρT ) (0.9, 0.9) Autoregressive coefficient: expenditure and tax shocks
(σG, σT ) 0.00148 Standard deviation: expenditure and tax shocks

Central bank
ζCB −0.18 Central bank’s balance sheet per issued government bond
π̄ 0.023

4
= 0.00575 Trend inflation (steady-state inflation)

γ1
π 2.5 Taylor coefficient of Y D1

t : responsiveness to inflation
γf≥2
π 1.5 Taylor coefficient of Y Df≥2

t : responsiveness to inflation
γy 0.15 Taylor coefficient: responsiveness to output
γf≥2
y 0.15 Taylor coefficient of Y Df≥2

t : responsiveness to output
(ρ1, ρ2) (1.05,−0.13) Autocorrelation in monetary policy: Coibion et al. (2012)
σY D1

0.0006 Standard deviation: monetary policy shock (for Y D1
t )

σY Df≥2
4× 10−9 Standard deviation: monetary policy shock (for Y Df≥2

t )
τY D IF×F State reduction matrix (for Y Df≥2

t )

Table 1.2: Parameter values
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2 Additional Figures

f = 1 maturity bond

f = 2 maturity bond

f maturity bond

f = F − 1 maturity bond

f = F maturity bond

One-period loan

Loan Market (Capital Market)

Bond Market (Term-Structure)

Government

Issue

HouseholdCentral Bank
Monetary policy
({Y Df

t } controls)

Firms

Capital Producer

zft shock
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Figure 1.2: Markets, Agents, and Mechanisms: households allocate wealth between bonds
and extending loans to intermediate goods producers. The government issues bonds with
f = 1 ∼ F maturities. Under a conventional monetary policy, the central bank manipulates
the yield of f = 1 bond without adjusting the holdings for longer-term bonds. Under the
yield-curve-control, the central bank manages yields of f = 1 ∼ F .
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Appendix A Derivation and Proofs

A.1 Detailed Derivations in Section 2

As in (15), an intermediate firm ν resetting its price at period t maximizes

max
∞∑
j=0

Et

[
θjQt,t+j ·

[ [
1− γL ·

(
R̃K

t+j+1 − 1
)]

· (1 + ζF ) · Pt+j(ν)Yt+j(ν)

−Wt+j(ν)Nt+j(ν)− PK
t+j−1Kt+j−1(ν)

]]
,

(A.1)

where Qt,t+j is the firm’s stochastic discount factor between periods t and t + j and ζF is
a production subsidy. Also, we define R̃K

t+j+1 ≡ Et+j[Qt+j,t+j+1R
K
t+j+1]. Solving for the

optimal resetting price at period t, P ∗
t , we obtain

P ∗
t

Pt

=

Et

[∑∞
j=0 θ

jQt,t+j

(
Pt+j

Pt

)ϵ+1

Yt+j

(
(1 + ζF )−1ϵ

ϵ− 1

)(
MCt+j|t(ν)

Pt+j

)]

Et

[∑∞
j=0 θ

jQt,t+j

(
Pt+j

Pt

)ϵ

Yt+j

[
1− γL ·

(
R̃K

t+j+1 − 1
)]] , (A.2)

where subindex t+j|t represents the value of the variable conditional on the firm having re-
set its price last time at period t, and MCt+j|t(ν)/Pt is the real marginal cost of production,
defined as

MCt+j|t(ν)

Pt+j

=

(
PK
t+j

Pt+j

)α(
Wt+j|t(ν)

Pt+jAt+j

)1−α

. (A.3)

A.1.1 Detailed Derivation in Section 2.9

Using equations equation (9), equation (12), equation (13) and equation (A.3) we can ex-
press firm-specific marginal costs as a function of the aggregate variables as in

MCt+j|t(ν)

Pt+j
= (1− α)

1−α
η+α

(
Ct+j

At+jN̄t+j

) η(1−α)
η+α

(
Yt+j

At+jN̄t+j

) 1−α
η+α

(
PK
t+j

Pt+j

)α( η+1
η+α )(

P ∗
t

Pt+j

)−( ϵ(1−α)
η+α )

.
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Similarly, we integrate loan and labor demand across the continuum of firms and obtain the
following expressions for the loan and labor aggregation conditions.

Kt

At−1N̄t−1
= α(1− α)

1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)−( η(1−α)
η+α )

∆t, (A.4)

Nt

N̄t
= (1− α)(

η
η+α )

(
Ct

AtN̄t

)−α( η
η+α )( Yt

AtN̄t

)( η
η+α )(PK

t

Pt

)α( η
η+α )

∆
η

η+1

t , (A.5)

where ∆t is a measure of price-dispersion that can be recursively defined as

∆t = (1− θ)

(
P ∗
t

Pt

)−ϵ( η+1
η+α)

+ θΠ
ϵ( η+1

η+α)
t ∆t−1. (A.6)

Plugging the real marginal cost and the expressions for Qt+j into the optimal resetting price
equation (i.e., equation (A.2)), we obtain

(
P∗
t

Pt

)1+ϵ

(
1−α
η+α

)

=

Et

∑∞
j=0 (θβ)j (1 − α)

1−α
η+α

(1 + ςF )−1ϵ

ϵ − 1

 Ct+j

At+jN̄t+j

−α η+1
η+α

 Yt+j

At+jN̄t+j

 η+1
η+α

(
Pt+j

Pt

)ϵ η+1
η+α

PK
t+j

Pt+j

α η+1
η+α


Et

∑∞
j=0

(θβ)j

(
Pt+j

Pt

)ϵ−1
 Ct+j

At+jN̄t+j

−1  Yt+j

At+jN̄t+j

 [1 − γL ·
(
R̃K

t+j+1
− 1

)]
.

(A.7)

We can simplify this expression as

P ∗
t

Pt

=

(
Ft

Ht

) 1

1+ϵ( 1−α
η+α) , (A.8)

where Ft and Ht are recursively written as

Ft = (1− α)
1−α
η+α

(
(1 + ςF )−1ϵ

ϵ− 1

)(
Ct

AtN̄t

)−α
(

η+1
η+α

) (
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)α
(

η+1
η+α

)
+ θβEt

[
Π

ϵ
(

η+1
η+α

)
t+1 Ft+1

]
,

Ht =

(
Ct

AtN̄t

)−1 Yt

AtN̄t

[
1− γL ·

(
R̃K

t+1 − 1
)]

+ θβEt

[
Πϵ−1

t+1Ht+1

]
.

(A.9)
Using (A.9), we obtain the following equilibrium price-resetting condition:

Ft

Ht

=

(
1− θ

1− θΠϵ−1
t

)( 1
ϵ−1)[1+ϵ( 1−α

η+α)]
. (A.10)
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We now rewrite equation (10) as

1 = β · Et

 RS
t+1

Πt+1GAt+1GN
·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 .

Since RS
t+1 depends on bonds return RHB

t+1 and loans return RK
t+1 while shares of savings that

flow into bonds (1 − λK
t ) and loans (λK

t ) are endogenous, we start from analyzing RHB
t+1 .

We can rewrite the aggregate return indices as functions of the bond yields {Y Df
t }Ff=1 as

Rj
t =

F−1∑
f=0

λj,f+1
t−1

(
Y Df

t

)−f

(
Y Df+1

t−1

)−(f+1)
, j ∈ {H,G,CB},

and also the household’s bond portfolio share as

λHB,f
t =



Et

 β · zft
Πt+1 ·GAt+1 ·GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) ·

(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f


ΦB

t



κB

, ∀f ,

ΦB
t =

 F∑
j=1

Et

 β · zjt
Πt+1 ·GAt+1 ·GN

·

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

) ·
(
Y Dj−1

t+1

)−(j−1)(
Y Dj

t

)−j


κB

1
κB

.

Now we find the equilibrium condition for the bond shares of the agents. Using the bond
market equilibrium condition (i.e., (17)), we obtain

λHB,f
t =

BG,f
t +BCB,f

t

BG
t +BCB

t

=
λG,f
t BG

t + λCB,f
t BCB

t

BG
t +BCB

t

. (A.11)
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We can rearrange the previous expression as

λCB,f
t = λHB,f

t +
(
λHB,f
t − λG,f

t

)
· BG

t

BCB
t

. (A.12)

Summing from f = 2 to F , and using
∑F

f=2 λ
j,f
t = 1− λj,1

t , j ∈ {H,G,CB} we obtain

F∑
f=2

λCB,f
t = 1− λHB,1

t +
(
λG,1
t − λHB,1

t

)
· BG

t

BCB
t

. (A.13)

Plugging (A.13) into (A.12) and after some rearrangements, we obtain

λCB,f
t =

λHB,f
t

(
λCB,1
t − λG,1

t

)
− λG,f

t

(
λCB,1
t − λHB,1

t

)
λHB,1
t − λG,1

t

, f > 1. (A.14)

Now, we can obtain an expression for the central bank’s bond holdings using (A.13) as

BCB
t =

(
λHB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
·BG

t . (A.15)

Combining (17) and (A.15), we obtain

BH
t

AtN̄t

= −

(
λCB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
· BG

t

AtN̄t

. (A.16)

Combining Lt = λK
t St and BH

t = (1− λK
t )St with Lt = γL ·

(
1 + ζF

)
· PtYt, we obtain

BH
t

AtN̄tPt

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
. (A.17)

Combining equation (A.16) and equation (A.17), we get the following equation

−

(
λCB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
· BG

t

AtN̄tPt

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
. (A.18)

47



A.1.2 Conventional Policy in Section 2.9.1

Using the bond market equilibrium (i.e., (17)) with
∑F

f=2 λ
HB,f
t = 1− λHB,1

t , we get

BH
t = −

∑F
i=2

(
BG,i

t +BCB,i
t

)
1− λHB,1

t

. (A.19)

Combining (A.19) with (4), (17), and (23c), we obtain the equilibrium set of equations,

λHB,f
t

1− λHB,1
t

=

BG,f
t

AtN̄tPt

+
BCB,f

AN̄P∑F
i=2

(
BG,i

t

AtN̄tPt

+
BCB,i

AN̄P

) , ∀f > 1. (A.20)

Combining (A.17), (A.19), and (23c) yields the following equilibrium equation:

−

∑F
i=2

(
BG,i

t

AtN̄tPt

+
BCB,i

AN̄P

)
1− λHB,1

t

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
, (A.21)

where normalized bond positions of the central bank are exogenously given. Finally, com-
bining (A.20) and (A.21), we finally obtain

−

(
BG,f

t

AtN̄tPt

+
BCB,f

AN̄P

)
·
(
λHB,f
t

)−1

= γL ·
(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
, ∀f > 1.

(A.22)

A.1.3 Steady-State Derivations in Section 3.1

At the steady state, the central bank decides the level of bond holdings of maturities BCB,f

that it wants to hold. It can be calibrated to match the data of the central bank’s balance
sheet. Given

{
λCB,f

}
and the size of its portfolio BCB, which is ζCB fraction of total gov-

ernment bond issuance satisfying BCB = ζCB ·BG, we obtain the steady state households’
bond shares as

λHB,f =
λG,f + λCB,f · ζCB

1 + ζCB
. (A.23)
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From the definition of RHB we have

F∑
f=1

λHB,f ·
(

Rf

RHB

)
= 1,

which together with equation (3) can be rearranged as:

λHB,f =

zf · Rf

RHB

Φ̃B


κB

, ∀f, with Φ̃B =

[
F∑

j=1

[
zj · Rj

RHB

]κB
] 1

κB

. (A.24)

The above (A.23) and (A.24) jointly determine the steady state yields and household shares.
Unfortunately, there is no analytical expression for them and we have to solve for the steady
state values numerically. How we proceed, relying on simple iterations:

1. Assume some initial guess for
{

Rf,guess

RHB

}F

f=1
.

2. Construct Φ̃B,old using previous guess with Φ̃B in equation (A.24).

3. Update estimates on
{

Rf

RHB

}F

f=1
with the following rules:

R1,new

RHB
=

1−
F∑

f=2

λHB,f

(
Rf

RHB

)
λHB,1

,
Rf,new

RHB
=
(
λHB,f

) 1
κB

(
zf
)−1

Φ̃B,old, f > 1.

4. Construct new shares of households λHB,f,new by plugging
{

Rf,new

RHB

}F

f=1
into (A.24).

Compute the discrepancy between these shares and the true ones found in (A.23). If
the error is big, set Rf,guess

RHB = Rf,new

RHB and repeat from Step 2 until convergence.

Using (7) and (10), we obtain

RHB =
β−1Π ·GA ·GN

1− λK
− λK

1− λK
RK . (A.25)

We can rewrite RG as

RG = Ξ ·RHB, Ξ =
F∑

f=1

λG,f ·
(

Rf

RHB

)
, (A.26)
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and from (A.25), it becomes

RG = Ξ ·
[
β−1Π ·GA ·GN

1− λK
− λK

1− λK
RK

]
. (A.27)

Using (6), we obtain an expression for the steady-state share of loans as

λK =

(
zK · RK

RHB

)κS

1 +
(
zK · RK

RHB

)κS
. (A.28)

Further combining (A.25) and (A.28), we obtain

λK

1− λK
≡
(
zK · RK

RHB

)κS

=
β−1 · Π ·GA ·GN −RHB

RK − β−1 · Π ·GA ·GN
(A.29)

The equilibrium government bonds are obtained from its budget constraint (i.e., (20)) and
written as

BG

AN̄P
= −

(
1− RG

Π ·GA ·GN

)−1 [
ζG + ζF − ζT

]( Y

AN̄

)
. (A.30)

The model needs the government to be a borrower, so BG < 0 at the steady-state. Also, we
would like to match the data in which the government runs primary deficit ζG+ζF−ζT > 0.
The only way to achieve that is by having RG < Π·GA·GN . Combining BCB = ζCB ·BG,
BH

t = −
(
BG

t +BCB
t

)
, (A.17), (A.26), and (A.29) yields

γL =

(
1 + ζCB

1 + ζF

)
·
[
ζG + ζF − ζT

]
·
(
1− Ξ

Π ·GA ·GN
·RHB

)−1

·
[
β−1 ·Π ·GA ·GN −RHB

RK − β−1 ·Π ·GA ·GN

]
.

(A.31)

(A.29) and (A.31) form a nonlinear system of equations on the unknown steady-states of
RK and RHB. After then, we can then simply back out bond returns as

Rf = RHB ·
(

Rf

RHB

)
.

Now that we have found the bond returns, we can recursively obtain the bond yields using

Y Df =
[
Rf ·

(
Y Df−1

)f−1
] 1

f
,
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where Y D0 = 1. The price dispersion is given by

∆ =

[
1− θ

1− θΠϵ( η+1
η+α)

](
1− θΠϵ−1

1− θ

)( ϵ
ϵ−1)(

η+1
η+α)

. (A.32)

From the capital producer’s optimization (i.e., (11)), we obtain an expression for PK

PK

P
= β−1 ·GA ·GN − (1− δ). (A.33)

The steady state representation of firms’ pricing (i.e., (A.9) can be written as

F = ξF ·
(

C

AN̄

)−α( η+1
η+α)( Y

AN̄

) η+1
η+α

, (A.34)

H = ξH ·
(

C

AN̄

)−1(
Y

AN̄

)
, (A.35)

with ξF = (1− α)
1−α
η+α

[
1− θβΠϵ( η+1

η+α)
]−1

(
(1 + ζF )−1ϵ

ϵ− 1

)(
PK

P

)α( η+1
η+α)

,

ξH =

[
1− γL ·

(
RK

RS
− 1

)]
·
[
1− θβ · Πϵ−1

]−1
.

Using (A.34), (A.35) and (A.10), we obtain

(
C

AN̄

)(
(1−α)η
η+α

)
= ξY ·

(
Y

AN̄

)−
(

1−α
η+α

)
, with ξY =

(
ξH

ξF

)(
1− θ

1− θΠϵ−1

)( 1
ϵ−1)

[
1+ϵ

(
1−α
η+α

)]
.

(A.36)

Combining (A.36) and (A.4), we obtain

K

AN̄
= ξK ·

(
Y

AN̄

)
, with ξK = α · (1− α)

1−α
η+α ·GA ·GN ·

(
PK

P

)−( η(1−α)
η+α )

∆ · ξY .

(A.37)

Plugging (A.37) into the aggregate resource constraint, we obtain

C

AN̄
= ξC ·

(
Y

AN̄

)
, with ξC = (1− ζG)− ξK ·

[
1−

(
1− δ

GA ·GN

)]
. (A.38)
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Combining (A.36) and (A.38), we obtain

Y

AN̄
=
(
ξY
)( 1

1−α)(
η+α
η+1 ) (ξC)−( η

η+1) . (A.39)

A.1.4 Log-linearization

We start by log-linearizing the equations that are common to the conventional policy model
and the yield-curve-control one, then derive the ones that are different. Log-linearize (33),

ĝat = ε̂At , ζ̂Gt =
aG

1 + aG
· ûG

t , ζ̂Tt =
aT

1 + aT
· ûT

t . (A.40)

Equations (38) and (10) with the help of (A.40) can be linearized as

ĉt =

[(
1− ζG

)
· Y
C

] [
ŷt −

1

1 + aG
· ûG

t

]
+

[
1− δ

GA ·GN

K

C

]
(k̂t − ε̂At )−

K

C
k̂t+1, (A.41)

ĉt = Et

[
ĉt+1 −

(
r̂St+1 − π̂t+1

)]
, (A.42)

where we use (A.40) to solve for ζ̂Gt and ĝat. Plugging (A.41) into (A.42), we obtain the
following dynamic IS equation for output ŷt.

ŷt = Et

[
ŷt+1 −

[
(1− ζG)−1(1− δ)

GA ·GN
· K
Y

]
(k̂t − ε̂At ) + (1− ζG)−1

[
1 +

1− δ

GA ·GN

]
K

Y
k̂t+1

− (1− ζG)−1K

Y
k̂t+2 − (1− ζG)−1C

Y

(
r̂St+1 − π̂t+1

)
+

1− ρG
1 + aG

· ûGt

]
. (A.43)

Linearizing the household’s bond portfolio conditions (i.e., (3)) yields

λ̂HB,f
t = κBEt

[
ẑft − π̂t+1 − ĝat+1 + ĉt − ĉt+1 − (f − 1)ŷd

f−1

t+1 + fŷd
f

t − ϕ̂B
t

]
, (A.44)

where

ϕ̂B
t = Et

(
−π̂t+1 − ĝat+1 + ĉt − ĉt+1

)
+

F∑
j=1

[
βzj

(
Y Dj−1

)−(j−1)

Π ·GA ·GN · ΦB (Y Dj)−j

]κB

ẑjt

+

F∑
j=1

j

[
βzj

(
Y Dj−1

)−(j−1)

Π ·GA ·GN · ΦB (Y Dj)−j

]κB

ŷd
j
t −

F−1∑
j=0

j

[
βzj+1

(
Y Dj

)−j

Π ·GA ·GN · ΦB (Y Dj+1)−(j+1)

]κB

Et(ŷd
j
t+1).

(A.45)
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Combining (A.44) and (A.45), we obtain the following expression for λ̂HB,f
t :

λ̂HB,f
t =

F∑
j=1

Ψfj
1 ẑjt +

F∑
j=1

Ψfj
2 ŷd

j

t +
F∑

j=1

Ψfj
3 Et

[
ŷd

j

t+1

]
, (A.46)

where

Ψfj
1 =



1− [ β · zj (Y Dj−1)
−(j−1)

Π ·GA ·GN · ΦB (Y Dj)−j

]κB
 · κB , if f = j,

−

[
β · zj (Y Dj−1)

−(j−1)

Π ·GA ·GN · ΦB (Y Dj)−j

]κB

· κB , if f ̸= j,

Ψfj
2 = j ·Ψfj

1 ,

Ψfj
3 =



−j ·

1− [ β · zj+1 (Y Dj)
−j

Π ·GA ·GN · ΦB (Y Dj+1)−(j+1)

]κB
 · κB , if j = f − 1,

j ·

[
β · zj+1 (Y Dj)

−j

Π ·GA ·GN · ΦB (Y Dj+1)−(j+1)

]κB

· κB , if j ̸= f − 1,

0 , if j = F .

We can put the system of F equation in matrix format as

−−→
λ̂HB
t = Ψ1 ·

−→
ẑ t +Ψ2 ·

−→
ŷdt +Ψ3 · Et

[−→
ŷdt+1

]
, (A.47)

where {Ψ1,Ψ2,Ψ3} are matrices containing elements of
{
Ψfj

1 ,Ψfj
2 ,Ψfj

3

}
, with f repre-

senting rows and j columns. Linearizing equations (34) and (35) yields

−→
λ̂G
t = Ξ̃ ·

−→
ˆ̃uB
t ,

−→
ˆ̃uB
t = T B ·

−→
ûB
t .

where Ξ̃ is a matrix whose elements Ξ̃fj (f -rows, j-columns) are

Ξ̃fj =


0 , if f = 1 & j = f,

1− λG,f , if f ≥ 2 & j = f,

−λG,j , if j ̸= f,
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and similarly T B is a matrix containing elements τBfj from (35). By defining Ξ = Ξ̃ · T B,
we can combine the previous two equations to obtain

−→
λ̂G
t = Ξ ·

−→
ûB
t . (A.48)

Therefore, with the help of (A.48), we obtain

−→
b̂Gt = Ξ ·

−→
ûB
t +

−→
1 Fx1 · b̂Gt , (A.49)

where
−→
1 Fx1 is a unit vector of size F . Log-linearizing the household’s stochastic discount

factor yields:
q̂t,t+1 = ĉt − ĉt+1 − π̂t+1 − ĝat+1. (A.50)

Log-linearizing ΦS
t in the household’s portfolio between loans and bonds (i.e., (6)), we

obtain

ϕ̂S
t =Et [qt,t+1] +

(
zBRHB

)κS

(zBRHB)
κS

+ (zKRK)
κS Et

[
r̂HB
t+1

]
+

(
zKRK

)κS

(zBRHB)
κS

+ (zKRK)
κS

(
ẑKt + Et

[
r̂Kt+1

])
.

(A.51)

Log-linearizing the household’s portfolio decision between loans and bonds (i.e., (6)) and
making use of the previous expression (i.e., (A.51)), we obtain

λ̂K
t = κS ·

[ (
zBRHB

)κS

(zBRHB)κ
S

+ (zKRK)κ
S

] (
ẑKt + Et

[
r̂Kt+1 − r̂HB

t+1

])
= κS

(
1− λK

) (
ẑKt + Et

[
r̂Kt+1 − r̂HB

t+1

])
. (A.52)

By linearizing the formula for the effective savings rate of the household (i.e., (7)), we
obtain

r̂St =
λK
(
RK −RHB

)
RS

λ̂K
t−1 +

(1− λK)RHB

RS
r̂HB
t +

λKRK

RS
r̂Kt . (A.53)

Log-linearizing the effective bond rates of households, government, and central bank,

r̂jt =
F∑

f=1

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )−f
·
[
λ̂j,f
t−1 − (f − 1)ŷd

f−1

t + fŷd
f

t−1

]
, j ∈ {HB,G,CB} ,
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with which we can express these equations on matrix format as

r̂jt = Ψj,4 ·
−−→
λ̂j
t−1 −Ψj,5 ·

−→
ŷdt +Ψj,6 ·

−−−→
ŷdt−1 , j ∈ {HB,G,CB} , (A.54)

where {Ψj,4,Ψj,5,Ψj,6} are 1xF -sized matrices whose elements are defined as:

Ψj,4
1f =

λj,f
(
Y Df−1

)−(f−1)

Rj (Y Df )−f
, Ψj,6

1f =
λj,f

(
Y Df−1

)−(f−1)

Rj (Y Df )−f
f.

Ψj,5
1f =


λj,f+1

(
Y Df

)−f

Rj (Y Df+1)−(f+1)
f , if f < F, j ∈ {HB,G,CB} ,

0 , if f = F,

By plugging (A.48) into r̂G in (A.54), we obtain

r̂Gt = ΨG,4 · Ξ ·
−−→
ûB
t−1 −ΨG,5 ·

−→
ŷdt +ΨG,6 ·

−−−→
ŷdt−1. (A.55)

By plugging (A.47) into r̂HB in (A.54), we obtain

r̂HB
t = ΨHB,4Ψ1 ·

−−→
ẑt−1 +

[
ΨHB,4Ψ2 +ΨHB,6

]
·
−−−→
ŷdt−1 +ΨHB,4Ψ3 · Et−1

[−→
ŷdt

]
−ΨHB,5 ·

−→
ŷdt.

(A.56)

Taking the expectation operator Et on the previous equation (A.56), we obtain

Et

[
r̂HB
t+1

]
= ΨHB,4Ψ1 ·

−→
ẑt +

[
ΨHB,4Ψ2 +ΨHB,6

]
·
−→
ŷdt +

[
ΨHB,4Ψ3 −ΨHB,5

]
Et

[−−−→
ŷdt+1

]
. (A.57)

By plugging (A.52) and (A.57) into (A.53), we obtain the expected effective savings rate
as follows.

Et

[
r̂St+1

]
= Ψ7−→ẑ t +Ψ8

−→
ŷdt +Ψ9Et

[−−−→
ŷdt+1

]
+Ψ10r̂Kt+1 +Ψ11ẑKt , (A.58)
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where

Ψ7 = ΨHB,4Ψ1

[
(1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ8 =
[
ΨHB,4Ψ2 +ΨHB,6

] [ (1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ9 =
[
ΨHB,4Ψ3 −ΨHB,5

] [ (1 + κSλK)(1− λK)RHB − κS(1− λK)λKRK

RS

]
,

Ψ10 =

[
1 + κS(1− λK)

]
λKRK − κS(1− λK)λKRHB

RS
, Ψ11 =

κSλK(1− λK)
(
RK −RHB

)
RS

Plugging back the expression of the household’s expected bonds rate (i.e., (A.57)) into her
portfolio decision between loans and bonds (i.e., (A.52)), we obtain

λ̂K
t = κS

(
1− λK

) (
ẑKt + r̂Kt+1

)
−Ψ12 ·

−→
ẑt −Ψ13 ·

−→
ŷdt −Ψ14 · Et

[−−−→
ŷdt+1

]
, (A.59)

where Ψ12 = κS(1 − λK)ΨHB,4Ψ1, Ψ13 = κS(1 − λK)
[
ΨHB,4Ψ2 +ΨHB,6

]
, and Ψ13 =

κS(1−λK)
[
ΨHB,4Ψ2 +ΨHB,6

]
. If we linearize the loan aggregation (A.4) and use (A.40),

we obtain

k̂t = ε̂At +

(
η + 1

η + α

)
ŷt −

(
η(1− α)

η + α

)
·
[
p̂Kt − ĉt

]
. (A.60)

Combining (A.41) and the above (A.60), we obtain

pKt =

[
(1− ζG)

Y

C
+

η + 1

η(1− α)

]
· ŷt −

[
(1− ζG) · Y

C

](
1

1 + aG

)
· uG

t (A.61)

+

[
1− δ

GA ·GN
· K
C

− η + α

η(1− α)

]
·
[
k̂t − ε̂At

]
− K

C
· k̂t+1.

If we linearize the supply block (i.e., (A.9), and (A.10)), we obtain

f̂t =

[
1− θβΠ

ϵ
(

η+1
η+α

)](
η + 1

η + α

)[
ŷt + αEt

[
q̂t,t+1 + p̂Kt − ĉt

]]
+ θβΠ

ϵ
(

η+1
η+α

)
Et

[
ϵ

(
η + 1

η + α

)
π̂t+1 + f̂t+1

]
,

ĥt =
[
1− θβΠϵ−1

] [
ŷt − ĉt −

(
γL ·RK

RS − γL · (RK −RS)

)
·
[
r̂Kt+1 + Et [q̂t,t+1]

]]
+ θβΠϵ−1Et

[
(ϵ− 1)π̂t+1 + ĥt+1

]
, (A.62)
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f̂t − ĥt =

[
1 + ϵ

(
1− α

η + α

)](
θΠϵ−1

1− θΠϵ−1

)
π̂t. (A.63)

Combining (A.42), (A.50), and (A.60) with (A.62), we obtain:

f̂t =−Ψ16 ·
−→
ẑt −Ψ17 · ẑKt −Ψ18 ·

[
k̂t − ε̂At

]
+Ψ19 · ŷt −Ψ20 ·

−→
ŷdt −Ψ21 · r̂Kt+1 (A.64)

−Ψ22 · Et

[−−−→
ŷdt+1

]
+Ψ23 · Et [π̂t+1] + Ψ24 · Et

[
f̂t+1

]
.

ĥt =Ψ26 ·
−→
ẑt +Ψ27 · ẑKt −Ψ28 ·

[
k̂t − ε̂At

]
+Ψ29 · ûGt +Ψ30 · ŷt +Ψ31 ·

−→
ŷdt (A.65)

−Ψ32 · r̂Kt+1 +Ψ33 · k̂t+1 +Ψ34 · Et

[−−−→
ŷdt+1

]
+Ψ35 · Et [π̂t+1] + Ψ36 · Et

[
ĥt+1

]
.

where

Ψ15 =
[
1− θβΠϵ( η+1

η+α )
]( η + 1

η + α

)
,

Ψ16 = αΨ15Ψ7 ,

Ψ17 = αΨ15Ψ11 ,

Ψ18 = Ψ15

(
α

1− α

)(
η + α

η

)
,

Ψ19 = Ψ15

[
1 +

(
α

1− α

)(
η + 1

η

)]
,

Ψ20 = αΨ15Ψ8 ,

Ψ21 = αΨ15Ψ10 ,

Ψ22 = αΨ15Ψ9 ,

Ψ23 = θβΠϵ( η+1
η+α )ϵ

(
η + 1

η + α

)
,

Ψ24 = θβΠϵ( η+1
η+α ) ,

Ψ25 =
[
1− θβΠϵ−1

]( γL ·RK

RS − γL · (RK −RS)

)
,

Ψ26 = Ψ25Ψ7 ,

Ψ27 = Ψ25Ψ11 ,

Ψ28 =
[
1− θβΠϵ−1

] [ 1− δ

GA ·GN
· K
C

]
,

Ψ29 =
[
1− θβΠϵ−1

]
(1− ζG)

Y

C

(
1

1 + aG

)
,

Ψ30 =
[
1− θβΠϵ−1

] [
1− (1− ζG)

Y

C

]
,

Ψ31 = Ψ25Ψ8 ,

Ψ32 = Ψ25 ·
(
1−Ψ10

)
,

Ψ33 =
[
1− θβΠϵ−1

] K
C

,

Ψ34 = Ψ25Ψ9 ,

Ψ35 = θβΠϵ−1(ϵ− 1) ,

Ψ36 = θβΠϵ−1 .

Linearizing the government’s budget constraint (i.e., (20)) yields

b̂Gt =
RG

Π ·GA ·GN

[
r̂Gt − π̂t − ĝat + b̂Gt−1

]
(A.66)

−
[
ζG + ζF − ζT

]( Y

B/P

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûG
t −

(
ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûT
t

]
.

Using the steady state equilibrium condition (i.e., (A.30)) with (A.40) and (A.55), we can
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express the previous (A.66) as

b̂Gt =
RG

Π ·GA ·GN

[
ΨG,4 · Ξ ·

−−→
ûB
t−1 −ΨG,5 ·

−→
ŷdt +ΨG,6 ·

−−−→
ŷdt−1 − π̂t − ε̂At + b̂Gt−1

]
(A.67)

+

(
1−

RG

Π ·GA ·GN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)(
aG

1 + aG

)
ûG
t −

(
ζT

ζG + ζF − ζT

)(
aT

1 + aT

)
ûT
t

]
.

Linearizing the capital producer’s optimization condition (i.e., (11)) yields

0 = Et

[
q̂t,t+1 + π̂t+1 +

(
PK/P

1− δ + PK/P

)
p̂Kt+1

]
. (A.68)

By plugging (A.42) and (A.50) into the previous (A.68) and rearranging, we get

Et

[
r̂St+1 − π̂t+1

]
=

(
PK/P

1− δ + PK/P

)
Et

[
p̂Kt+1

]
. (A.69)

Plugging expressions on the effective savings rate (i.e., (A.58)) and the rental price of
capital (i.e., (A.61)) into (A.69) we obtain

r̂Kt+1 =−Ψ37 ·
−→
ẑt −Ψ38 · ẑKt −Ψ39 ·

−→
ŷdt −Ψ40 · Et

[−−−→
ŷdt+1

]
+Ψ41 · Et [π̂t+1] (A.70)

+Ψ42 · Et [ŷt+1] + Ψ43 · k̂t+1 −Ψ44 · Et

[
k̂t+2

]
−Ψ45 · ûGt ,

where we defined

Ψ37 =
(
Ψ10
)−1

Ψ7,

Ψ38 =
(
Ψ10
)−1

Ψ11,

Ψ39 =
(
Ψ10
)−1

Ψ8,

Ψ40 =
(
Ψ10
)−1

Ψ9,

Ψ41 =
(
Ψ10
)−1

,

Ψ42 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)[
(1− ζG)

Y

C
+

(
η + 1

η(1− α)

)]
,

Ψ43 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)[
1− δ

GA ·GN

K

C
−
(

η + α

η(1− α)

)]
,

Ψ44 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)
K

C
,

Ψ45 =
(
Ψ10
)−1

(
PK

P

1− δ + PK

P

)
(1− ζG)

Y

C

(
ρG

1 + aG

)
.

Finally, plugging the effective savings rate (i.e., (A.58)) into the Euler equation (i.e., (A.43)),
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we obtain

ŷt = Et

[
ŷt+1 +Ψ46 · π̂t+1 −Ψ47 ·

−→
ẑ t −Ψ48 · ẑKt −Ψ49 ·

−→
ŷdt −Ψ50 · Et

[−−−→
ŷdt+1

]
(A.71)

−Ψ51 · r̂Kt+1 −Ψ52 · (k̂t − ε̂At ) + Ψ53 · k̂t+1 −Ψ54 · k̂t+2 +Ψ55 · ûG
t

]
,

where we defined

Ψ46 = (1− ζG)−1C

Y
,

Ψ47 = Ψ27Ψ7,

Ψ48 = Ψ27Ψ11,

Ψ49 = Ψ27Ψ8,

Ψ50 = Ψ27Ψ9,

Ψ51 = Ψ27Ψ10,

Ψ52 =
(1− ζG)−1(1− δ)

GA ·GN

K

Y
,

Ψ53 = (1− ζG)−1

[
1 +

1− δ

GA ·GN

]
K

Y
,

Ψ54 = (1− ζG)−1K

Y
,

Ψ55 =
1− ρG
1 + aG

.

Linearizing the labor aggregation condition (i.e., (A.5)) yields

n̂t = −α

(
η

η + α

)
ĉt +

(
η

η + α

)
ŷt + α

(
η

η + α

)
· p̂Kt . (A.72)

Plugging equation (A.41) and equation (A.61) into equation (A.72), we obtain

n̂t =

(
η

η + α

)[
1 +

(
α

1− α

)(
η + 1

η

)]
· ŷt −

(
α

1− α

)
·
[
k̂t − ε̂At

]
. (A.73)

Log-linearization: the conventional policy specific derivations Linearizing the bond
market equilibrium condition (i.e., (A.22)), we obtain

λ̂HB,f
t =

(
BG,f

BG,f +BCB,f

)
b̂g,ft − ŷt +

1

1− λK
· λ̂K

t , f ≥ 2. (A.74)

From λHB,1
t = 1−

∑F
f=2 λ

HB,f
t we obtain

λ̂HB,1
t = −

F∑
f=2

λHB,f

λHB,1
λ̂HB,f
t . (A.75)
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We can rearrange the previous expressions (i.e., (A.74) and (A.75)) in the matrix form as

Θ1 ·
−−→
λ̂HB
t = Θ2 ·

−→
b̂gt −Θ3 · ŷt +Θ4 · λ̂K

t , (A.76)

where {Θ1, Θ2} are FxF -sized matrices with elements Θ1
jf (row j, column f ) and {Θ3, Θ4}

are Fx1 vectors with j−element Θ3
j1. We define their elements as

Θ1
jf =

1 , if j = f,

λHB,f

λHB,1
, if j = 1& f > 1,

Θ2
jf =


BG,f

BG,f +BCB,f
, if j > 1& j = f,

0 , otherwise,

Θ3
j1 =

0 , if j = 1,

1 , otherwise,
,

Θ4 =
1

1− λK
·Θ3 .

By inverting Θ1 in (A.76), we can rewrite (A.76) as

−−→
λ̂HB
t = Θ5 ·

−→
b̂gt −Θ6 · ŷt +Θ7 · λ̂K

t , (A.77)

where we define Θ5 = (Θ1)
−1

Θ2, Θ6 = (Θ1)
−1

Θ3, Θ7 = (Θ1)
−1

Θ4. Plugging the
government’s bond portfolio (i.e., (A.49)), the household’s loan share (i.e., (A.59)), and the
rental price of capital (i.e., (A.61)) into (A.77), we obtain

−−→
λ̂HB
t =Θ8 · b̂Gt −Θ6 · ŷt +Θ9 ·

(
ẑKt + r̂Kt+1

)
−Θ10 ·

−→
ŷdt −Θ11 · Et

[−−−→
ŷdt+1

]
−Θ12 ·

−→
ẑt +Θ13 ·

−→
ûB
t ,

where we define

Θ8 = Θ5 · −−→1Fx1,

Θ9 = Θ7 · κS
(
1− λK

)
,

Θ10 = Θ7 ·Ψ13,

Θ11 = Θ7 ·Ψ14,

Θ12 = Θ7 ·Ψ12,

Θ13 = Θ5 · Ξ.

By plugging the household’s optimal portfolio (i.e., (A.47)) into the above, we obtain

−→
ŷdt = Θ14 · b̂Gt −Θ15 · ŷt +Θ16 · r̂Kt+1 −Θ17 · Et

[−−−→
ŷdt+1

]
−Θ18 ·

−→
ẑt +Θ19 · ẑKt +Θ20 ·

−→
ûBt ,

where Θ14 = [Θ10 +Ψ2]
−1

Θ8,Θ15 = [Θ10 +Ψ2]
−1

Θ6,Θ16 = [Θ10 +Ψ2]
−1

Θ9,Θ17 =

[Θ10 +Ψ2]
−1

[Θ11 +Ψ3] ,Θ18 = [Θ10 +Ψ2]
−1

Θ12,Θ19 = [Θ10 +Ψ2]
−1

[Θ9 −Ψ1] ,Θ20 =

[Θ10 +Ψ2]
−1

Θ13.
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Log-linearization: the Yield-Curve-Control (YCC) policy specific derivations Lin-
earizing the Taylor rule for f -maturity bond (i.e., (24d)) yields1

ŷd
Y CC,f

t = γf
CP ŷd

CP,f

t +
(
1− γf

CP

) [
γf
π π̂t + ε̃Y Df

t

]
, f ≥ 2. (A.78)

We define a (F−1)×(F−1) matrix ΓCP with ΓCP
ff = γf+1

CP for f = 1 ∼ F−1 and ΓCP
ij = 0

for i ̸= j. From (36), we define T Y D
(f≥2), a (F − 1)× L matrix with T Y D

(f≥2),f,l = τY D
f+1,l (row

f , column l) and the vector of Taylor coefficients −→γπ(f≥2) =
[
γ2
π, . . . , γ

F
π

]′. If we construct
such vectors as

−−−−→
ˆydY CC
t (f≥2) =

[
ŷd

Y CC,2

t , . . . , ŷd
Y CC,F

t

]′
,
−−−→
ˆydCP
t (f≥2) =

[
ŷd

CP,2

t , . . . , ŷd
CP,F

t

]′
, (A.79)

then above equation (A.78) can be written in vector form as

−−−−→
ˆydY CC
t (f≥2) = ΓCP

−−−→
ˆydCP
t (f≥2) + (I − ΓCP ) ·

[−→γπ(f≥2) · π̂t + T Y D
(f≥2) ·

−−→
εY D
t

]
, (A.80)

where I is the identity matrix of size F − 1. Since
−−−→
ˆydCP
t is the yield vector that prevails in

the counterfactual scenario where the current yield is determined by conventional monetary
policy, its dynamics will follow

−−−→
ŷd

CP

t = Θ14 · b̂Gt −Θ15 · ŷt +Θ16 · r̂Kt+1 −Θ17 · Et

[−−−→
ŷd

CP

t+1

]
−Θ18 ·

−→
ẑt +Θ19 · ẑKt +Θ20 ·

−→
ûBt ,

where coefficients Θi for i = 14 ∼ 20 are the same as in the conventional policy case, and−−−→
ˆydCP
t and

−−−−→
ˆydY CC
t are defined as

−−−−→
ˆydY CC
t = [ŷd

Y CC,1

t ,
−−−−→

ˆydY CC
t

′
(f≥2)]

′,
−−−→
ˆydCP
t = [ŷd

Y CC,1

t ,
−−−→
ˆydCP
t

′
(f≥2)]

′.

where ŷd
Y CC,1

t follows the Taylor rules in (24a) and (24b). Now that
−−−−→

ˆydY CC
t governs house-

holds’ intertemporal decisions, (A.71) becomes

ŷt = Et

[
ŷt+1 +Ψ46 · π̂t+1 −Ψ47 ·

−→
ẑ t −Ψ48 · ẑKt −Ψ49 ·

−−−−→
ŷd

Y CC

t −Ψ50 · Et

[−−−−→
ŷd

Y CC

t+1

]
−Ψ51 · r̂Kt+1 −Ψ52 · (k̂t − ε̂At ) + Ψ53 · k̂t+1 −Ψ54 · k̂t+2 +Ψ55 · ûG

t

]
.

1If ρ1 ̸= 0 or ρ2 ̸= 0 in (24d), then the policy rule in (A.78) should account for them and target output as
well. We intentionally assume that the policy rule here targets inflation only for simplicity of expressions.
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Appendix B Calibration and Estimation Strategy

B.1 Calibrating {zf}Ff=1 and zK at the Steady State

Calibration of
{
zf
}F
f=1

We explain how to calibrate
{
zf
}F
f=1

to match the yield curve.
Based on data on yields of bonds with different maturities, we calculate each f -maturity
bond’s average holding returns

{
Rf
}

, which we would use as our calibration target.

1. Compute the return ratio
{

RF

RHB

}
.2

2. Back out steady state bond shares
{
λHB,f

}
using equation (A.23)

3. Normalize z1 = 1 and obtain initial guess for {zj,guess}. Set zj,old = zj,guess in the
iteration below.

4. Construct Φ̃old using the following formula, where the return ratios { Rf

RHB } across
maturities are obtained from the data:

Φ̃old =

[
1 +

F∑
f=2

[
zj
(

Rf

RHB

)]κB
] 1

κB

.

5. Back out new zf,new, f = 2, . . . , F estimates using:

zf,new =
(
λHB,f

) 1
κB

(
Rf

RHB

)−1

Φ̃old

6. If difference with Φ̃old is large, set zf,old = zf,new and start again from the step 4

Calibration of zK We calibrate zK such that the model’s steady-state return on the house-
hold’s bond portfolio, RHB, matches with the observed data average. This alignment is
achieved by finding the steady-state value of RK from (A.31),3 and subsequently replacing
the values of RHB and RK into equation (A.29), which enables us to recover the zK value
consistent with the model’s moment.

2To determine the return on the household’s bond portfolio RHB , we combine the data on the average
returns by maturity {Rf}Ff=1 with the portfolio shares {λHB,f}Ff=1.

3In the context of our present calibration, the derived RK is situated within the range corresponding to
the average corporate debt rate across varied ratings.
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B.2 Elasticity Estimation, κB

Combining the log-linear approximation of equation (3), we obtain

̂
log
(
λH,f
t

)
= κB ·

(
1− λH,f

)
· Et

[
r̂f−1
t+1

]
− κB ·

∑
j ̸=f

λH,j · Et

[
r̂j−1
t+1

]
+ εft ,

where εft ≡ κB ·
∑

j ̸=f λ
H,j
t ·

[
̂

log
(
zft

)
− ̂log

(
zjt
)]

is a residual term containing the effects

on the households’ bond portfolio of shocks to different maturity preferences along the
yield curve. Differentiation across maturities yields the following expression

log
(
λH,f
t

)
− log

(
λH,l
t

)
= αfl + κB · Et

[
rf−1
t+1 − rl−1

t+1

]
+ εflt , (B.1)

where αfl denotes a constant, and εflt = εft − εlt represents a residual term embodying the
discrepancy between the preference shocks for bond maturities f and l. The expected bond
return spread, denoted as Et

[
rf−1
t+1 − rl−1

t+1

]
, poses challenges for empirical observation.

Therefore, we turn to the following approximation centered on the bond yield spread:

Et

[
rf−1
t+1 − rl−1

t+1

]
=ydft − ydlt

− (f − 1) · Et

[
ydft+1 − ydft

]
︸ ︷︷ ︸

add as control

+(l − 1) · Et

[
ydlt+1 − ydlt

]︸ ︷︷ ︸
add as control

+ (f − 1) · Et

[
ydft+1 − ydf−1

t+1

]
︸ ︷︷ ︸

≈0 (by assumption)

−(l − 1) · Et

[
ydlt+1 − ydl−1

t+1

]︸ ︷︷ ︸
≈0 (by assumption)

,

where the spread ydft − ydlt in the initial line is directly observable from the data, the ex-
pected yield change in the subsequent line can be approximated by employing the realized
changes as control variables, and the terms in the final line may be assumed to be close to
zero over short time intervals. The final equation used for the empirical estimation of the
elasticity parameter κB becomes:

log
(
λH,f
t+h

)
− log

(
λH,l
t+h

)
= αfl

h + κB,h ·
[
ydft − ydlt

]
+ x′

tβ
fl
h + εflt+h, h ≥ 0 , (B.2)

where xt denotes a vector of control variables accompanied by the corresponding coef-
ficients βfl

h , and the time subindex h ≥ 0 accommodates a lagged effect from the yield
spread to the bond portfolio composition which might occur in practice. Equation (B.2)
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is estimated across various horizons h utilizing Jordà local projection methods, thereby
facilitating the determination of a plausible range for the elasticity parameter κB.

The unbiased estimation of κB in equation (B.2) requires the fluctuations in the bond
yield spread ydft − ydlt to be uncorrelated with shocks in the relative preferences for each
maturity, as captured by εflt+h. This implies that any other aggregate shocks, uncorrelated
to the contemporaneous (and/or future) maturity preferences of households, could serve
as potentially valid instruments for the yield spread. Following this rationale, we instru-
ment the changes in the contemporaneous yield spread with its own lagged value, while
at the same time, we incorporate the lags of the dependent variable as controls to elimi-
nate any potential serial correlation of the preference shocks. The dependent variable is

−
2
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Estimate IV
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Figure B.1: Impulse-Response to a shock in the yield spread, ydft −ydlt. The figure presents
the coefficient estimates for the bond portfolio elasticity, κB, in equation (B.2), following
the estimation methodology detailed in appendix B.2. The solid black line illustrates the
estimate from the instrumental variables (IV) regression, with dashed lines indicating the
95% robust confidence intervals. The red line exhibits alternative OLS estimates. The
sample period is from 2003m3 to 2019m3.

defined as the log-difference between the aggregate household portfolio shares in a group
of long-maturity bonds and a group of short-maturity bonds, respectively. For the long-
maturity group, we calculate the share of bonds with maturities ranging from 5 to 10 years
within the households’ portfolio, whereas for the short-maturity group, bonds with maturi-
ties spanning from 15 to 90 days are considered. For both groups, the aggregate household

64



portfolio holdings are computed on a monthly basis by deducting the U.S. Treasury secu-
rities held by the Federal Reserve from the Government’s outstanding Treasury amounts
within the selected maturity ranges.4 The principal regressor employed is the spread be-
tween the market yields of the 7-year and the 1-month constant maturity U.S. Treasury
securities, which lie within the maturity bands of the selected portfolio shares in the de-
pendent variable. Additionally, we control for the one-month-ahead changes in the 7-year
and the 1-month constant maturity yields, along with the first three lags of the dependent
variable. The regressions are estimated across the sample period extending from 2003m3
to 2019m3.5

Figure B.1 delineates the IV and OLS estimates derived from Jordà local projections
across a fifty-month horizon, accompanied by the 95% robust confidence bands pertinent
to the primary IV regression. Both estimates largely align with the anticipated reaction of
aggregate household portfolio shares, as posited by the model, in response to a shock to the
yield spread. For calibration purposes, we select a value of κB = 10, which is consistent
with the short-term portfolio response observed in the Figure B.1.

4The outstanding amounts of Government Treasuries are reported in the U.S. Treasury Monthly State-
ment of the Public Debt (MSPD).

5The lower bound of the sample period is dictated by the availability of maturity-disaggregated statistics
concerning the Federal Reserve’s Treasury bond portfolio, commencing from 2002m12.
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Appendix C Welfare

C.1 Deriving a second-order welfare approximation

In order to approximate welfare up to a second-order, we cannot discard ∆̂t, which is the
price dispersion’s log-deviation from its steady-state value in the presence of trend inflation.

Step 1: For any variable X , we define X̄ as its steady-state value (with the positive trend
inflation Π̄ > 1) and X̄F as its flexible price steady-state value. Also define (small) letter
x̃ as log-deviation of X around X̄F , and x̂ as log-deviation of X around X̄ .

Constrained efficient (i.e., flexible-price) steady state With the optimal production sub-
sidy ζF = (ϵ − 1)−1 that eliminates the monopolistic competition distortion, there is no
distortion other than the firms’ financing constraint in the flexible-price steady state econ-
omy anymore.6 In particular, each firm’s price resetting condition (i.e., (A.2)) becomes

1 =
P ∗
t

Pt

=
(1 + ζF )−1ϵ

ϵ− 1︸ ︷︷ ︸
=1

·MCt

Pt

=
MCt

Pt

, (C.1)

where we use the fact that all firms become identical, and thus MCt(ν) = MCt for all
ν ∈ [0, 1]. Therefore, the real marginal cost becomes 1 for all firms. Plugging the unit
real marginal cost (i.e., (A.3)) into the individual firm’s labor demand (i.e., (16)) with
Wt(ν) = Wt for ∀ν, and defining nt =

Nt

N̄t
and yt =

Yt

AtN̄t
, we obtain

nt = (1− α)yt

(
PK
t

Pt

)α(
Wt

PtAt

)−α

= (1− α)yt

(
Wt

PtAt

)−1

, (C.2)

which, with the household’s intra-temporal consumption-labor decision (i.e., (9)), becomes:

n
1
η

t

c−1
t

= (1− α)
yt
nt

, (C.3)

which is the social efficiency condition that ensures that the household’s marginal rate
of substitution matches with the marginal rate of technical substitution. Therefore, at the

6The capital producing firm is competitive and thus our economy features no friction other than the firms’
financing constraint if it were not nominal rigidity nor trend inflation. Still, the constraint on loan issuance
does not affect firms’ marginal decisions on labor and capital.
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flexible-price steady state, the new constant Φ, which will turn out to enter in the per-period
welfare later, can be calculated as

Φ ≡ (n̄F )1+
1
η = (1− α)

ȳF

c̄F
= (1− α)

Ȳ F

C̄F
, (C.4)

where n̄F , ȳF , and c̄F are values of normalized labor, output, and consumption, respec-
tively.

Step 2: With aggregation equations (A.5) and (A.4), we obtain

(
Nt

N̄t

)1−α(
Kt

At−1N̄t−1

)α

= αα(1−α)1−α(GAt ·GN)α
(

Yt

AtN̄t

)
∆

(1−α)[ η
η+1

+ α
1−α ]

t , (C.5)

which is the aggregate production function with the price dispersion ∆t. Plugging steady-
state (with trend-inflation) capital (i.e., A.37)) and output (i.e., (A.39)) into (C.5) yields

N

N̄
=
[
αα(1− α)1−α (GA ·GN)α

(
ξK
)−α
] 1

1−α
∆

η+α
(η+1)(1−α)

(
ξY
) 1

1−α(
η+α
η+1 ) (ξC)− η

η+1

(C.6)
where ξK in (A.37), ξY in (A.39), and ξC in (A.38) all depend on θ and the trend inflation
Π. Therefore, we see that n̄ ̸= n̄F and define logXn ≡ log n̄− log n̄F , which will turn out
to be useful later when we calculate the household’s first-order labor cost.

Step 3: Price dispersion with positive trend inflation

Delta method Before we start, we would use this approximation throughout this section.
For a random variable X with E(X) = µX , we have

Var (f(X)) = f ′(µX)
2 · Var(X) + h.o.t. (C.7)

Price dispersion We use lower-case pt and pt(ν) as logarithms of Pt and Pt(ν). By
applying the above delta method to P 1−ϵ

t = Eν (Pt(ν)
1−ϵ), we obtain

pt =

∫ 1

0

pt(ν)dν︸ ︷︷ ︸
≡p̄t

+
1

2

(
1

1− ϵ

)
Varν (Pt(ν)

1−ϵ)

Eν (Pt(ν)1−ϵ)2
+ h.o.t. (C.8)
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where we define p̄t ≡ Eν(pt(ν)). Applying the delta method to Varν(Pt(ν)
1−ϵ), we have

Varν
(
Pt(ν)

1−ϵ
)
= (1− ϵ)2 · [exp((1− ϵ)p̄t)]

2 · Varν(pt(ν)), (C.9)

where we define Dt ≡ Varν(pt(ν)). Applying the delta method to Eν(Pt(ν)
1−ϵ), we obtain

Eν

(
Pt(ν)

1−ϵ
)
= exp((1− ϵ)p̄t)

[
1 +

(1− ϵ)2

2
Dt

]
. (C.10)

Plugging (C.9) and (C.10) into (C.8), we obtain

pt = p̄t +
1− ϵ

2
· Dt[

1 + (1−ϵ)2

2
Dt

]2 , (C.11)

which we linear-approximate around Dt = D̄ and obtain

pt − p̄t =
1− ϵ

2
· D̄[

1 + (1−ϵ)2

2 D̄
]2

︸ ︷︷ ︸
≡Θp

1

+
1− ϵ

2
·

1− (1−ϵ)2

2 D̄[
1 + (1−ϵ)2

2 D̄
]3

︸ ︷︷ ︸
≡Θp

2

·(Dt − D̄) = Θp
1 +Θp

2(Dt − D̄).

(C.12)

Now from our original definition of the price dispersion ∆t (i.e., (28)), we take logarithm
on both sides, linear-approximate around D̄, and plug (C.12) into it to attain

ln∆t = ln

∫ 1

0

(
Pt(ν)

Pt

)−ϵ(η+1)
η+α

dν

=
ϵ(η + 1)

η + α
(pt − p̄t) + ln

(
1 +

1

2

(
ϵ(η + 1)

η + α

)2

D̄

)
+

1
2

(
ϵ(η+1)
η+α

)2

1 + 1
2

(
ϵ(η+1)
η+α

)2
D̄

(Dt − D̄)

= Θ
∆
1 + Θ

∆
2 · (Dt − D̄) + h.o.t,

where

Θ
∆
1 ≡

ϵ(η + 1)

η + α
·
1 − ϵ

2
·

D̄[
1 +

(1−ϵ)2

2 D̄
]2 + ln

(
1 +

1

2

(
ϵ(η + 1)

η + α

)2

D̄

)
, (C.13)

Θ
∆
2 ≡

ϵ(η + 1)

η + α
·
1 − ϵ

2
·

1 − (1−ϵ)2

2 D̄[
1 +

(1−ϵ)2

2 D̄
]3 +

1
2

(
ϵ(η+1)
η+α

)2

1 + 1
2

(
ϵ(η+1)
η+α

)2
D̄

. (C.14)

If we define bt as the logarithm of the newly price-resetting firm’s relative price P ∗
t /Pt and

b̄ as its steady state value, we have b̄ ̸= 0 due to the trend inflation. Combining (A.8) and
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(A.10) and linearizing, we obtain

bt ≡ p∗t −pt = b̄+
θΠϵ−1

1− θΠϵ−1︸ ︷︷ ︸
≡M

π̂t = b̄+M · π̂t, with b̄ =
1

ϵ− 1
ln

(
1− θ

1− θΠϵ−1

)
. (C.15)

With Dt = Varν(pt(ν)) = Eν((pt(ν)− pt + pt − p̄t)
2), we can write it as

Dt =

∫ 1−θ

0
(p∗t − pt)

2dν + 2

(∫ 1−θ

0
(p∗t − pt)dν

)
(pt − p̄t) + (1− θ)(pt − p̄t)

2 +

∫ 1

1−θ
(pt−1(ν)− p̄t)

2dν

= (1− θ)(p∗t − pt)
2 + 2(1− θ)(p∗t − pt)(pt − p̄t) + (1− θ)(pt − p̄t)

2 + θDt−1 + θ(p̄t − p̄t−1)
2, (C.16)

where we use ∫ 1

1−θ

(pt−1(ν)− p̄t)
2dν = θDt−1 + θ(p̄t−1 − p̄t)

2. (C.17)

Conjecture Following Coibion et al. (2012), we conjecture the dynamics of Dt up to a
second-order as7

Dt−D̄ = κDπ̂t+ZD(π̂t)
2+FD(Dt−1−D̄)+GD(Dt−1−D̄)π̂t+HD(Dt−1−D̄)2. (C.18)

with

D̄ = (b̄+Θp
1)

2 +
θ

1− θ
(π̄)2 (i.e., steady state value of Dt),

κD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

2(1− θ)M(b̄+Θp
1) + 2θπ̄

]
,

ZD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

(1− θ)M2 + 2(1− θ)MΘp
2κD + (Θp

2)
2(κD)2 + θ − 2θΘp

2κD

]
,

FD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

θ + 2θΘp
2π̄

]
, (C.19)

GD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

2(1− θ)MΘp
2FD + 2(Θp

2)
2κDFD − 2θΘp

2FD

+ 2θΘp
2 − 2θ(Θp

2)
2κD

]
,

HD =
[
1− 2(1− θ)Θp

2(b̄+Θp
1) + 2θΘp

2π̄
]−1 [

(Θp
2)

2(FD)2 + θ(Θp
2)

2 − 2θ(Θp
2)

2FD

]
.

With no trend inflation, we would have π = 0 and D̄ = 0, thus Dt becomes the second-
order variable around 0 and we would have κD = 0. However with steady-state inflation
π > 0 and the price dispersion measure D̄ > 0, as we see in (C.18), Dt includes π̂t term

7Following Coibion et al. (2012), we assume κD is of the same order as the shock processes, so that the
first term becomes of a second-order. Then our log-linearized model derivation without price dispersion term
is valid.
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as one of its components, with κD being of the first-order. Our objective is to derive (C.18)
from firms’ optimal pricing behaviors and the price dispersion’s effects on the aggregate
price itself. Plugging (C.12) and (C.15) into (C.16) and replace (Dt − D̄) with the conjec-
tured form in (C.18) up to a second-order,8 and comparing coefficients, we obtain the set
of coefficients in (C.19).

Consumption utility We can second-order approximate the utility of consumption as

u(ct) = log ct = u(c̄F ) + u′
c̄F · c̄F ·

(
ct − c̄F

c̄F

)
︸ ︷︷ ︸
=c̃t+���1

2 (c̃t)
2

+
1

2
u′′
c̄F · (c̄F )2 ·

(
ct − c̄F

c̄F

)2

︸ ︷︷ ︸
=��(c̃t)

2

+h.o.t = u(c̄F ) + c̃t + h.o.t.

(C.20)

Step 4: Labor aggregation and cost
By applying the delta method (i.e., (C.7)) to the labor aggregator, we can obtain9

ñt − Eν(ñt(ν)) =

1
2

(
η+1
η

)
∇

1 + 1
2

(
η+1
η

)2
∇︸ ︷︷ ︸

≡Θn
1

+
1

2

(
η + 1

η

) 1− 1
2

(
η+1
η

)2
∇[

1 + 1
2

(
η+1
η

)2
∇
]3

︸ ︷︷ ︸
≡Θn

2

·(∇t −∇) (C.21)

where ∇t ≡ Varν(log nt(ν)). The second-order approximation to the firm ν-specific labor
cost around the flexible-price steady state yields

η

η + 1

(
Nt(ν)

N̄t

) η+1
η

=
η

η + 1
(n̄F )

η+1
η +Φ

[
ñt(ν) +

1

2

(
η + 1

η

)
ñt(ν)

2

]
+ h.o.t (C.22)

where the constant Φ is from (C.4). Aggregating (C.22) over firms ν ∈ [0, 1] and plugging
(C.21) results in

η

η + 1

∫ 1

0

(
Nt

N̄t

) η+1
η

dν −
η

η + 1
(n̄F )

η+1
η = Φ

[
Eν(ñt(ν)) +

1

2

(
η + 1

η

)∫ 1

0
ñt(ν)

2dν

]
= −Φ

(
Θn

1 −
1

2

(
η + 1

η

)
(Θn

1 )
2

)
+Φ

[(
1−

(
η + 1

η

)
Θn

1

)
ñt +

1

2

(
η + 1

η

)
ñ2
t

+
1

2

(
η + 1

η

)
(Θn

2 )
2
(
Varν(ñt(ν))−∇

)2 −
η + 1

η
Θn

2 ñt
(
Varν(ñt(ν))−∇

)
+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

)(
Varν(ñt(ν))−∇

)
+

1

2

(
η + 1

η

)
∇
]
.

(C.23)

8In the right-hand side of the expression, (pt− p̄t)
2 appears and has a second-order term (Dt−D̄)2 from

(C.12), and we use (C.18) to replace this term with terms related to (π̂t)
2, (Dt−1 − D̄)2, and π̂t(Dt−1 − D̄).

9In the flexible-price steady-state, there is no heterogeneity among firms, i.e., n̄F (ν) = n̄F for ∀ν.
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Labor dispersion From individual firm’s labor and capital demand (i.e., (16)) and the
household’s intra-marginal condition (i.e., (9)), we obtain

k̃t(ν) =

(
1 +

1

η

)
ñt(ν) + aggregate, (C.24)

where ‘aggregate’ stands for aggregate variables. Therefore, we obtain

ỹt(ν) =

(
1 +

α

η

)
ñt(ν) + aggregate, (C.25)

by plugging (C.24) into each firm’s production function ỹt(ν) = αk̃t(ν) + (1 − α)ñt(ν).
From the Dixit-Stiglitz good demand (i.e., (13)) and with (C.25), we can get

Varν(ñt(ν)) =

(
ϵ

1 + α
η

)2

Varν(pt(ν)), with ∇ =

(
ϵ

1 + α
η

)2

D̄. (C.26)

Step 5: Constructing a welfare function: Combining the consumption utility (i.e., (C.20))
and the labor disutility (i.e., (C.23)), we can construct welfare as

EUt − ŪF = E

[
c̃t +Φ

(
Θn

1 − 1

2

(
η + 1

η

)
(Θn

1 )
2

)
− Φ

{(
1−

(
η + 1

η

)
Θn

1

)
ñt +

1

2

(
η + 1

η

)
ñ2
t

+
1

2

(
η + 1

η

)
(Θn

2 )
2
(
Varν(ñt(ν))−∇

)2 − η + 1

η
Θn

2 ñt

(
Varν(ñt(ν))−∇

)
+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

)(
Varν(ñt(ν))−∇

)
+

1

2

(
η + 1

η

)
∇

}]
,

(C.27)

with from (A.38), (A.39), and (C.6) the flexible-price steady-state utility given as

Ū
F

= c̄
F −

η

η + 1

(
NF

N̄

) η+1
η

=
1

η + 1

[
log
(
ξ
C,f
)
+

η + α

1 − α
log
(
ξ
Y,f
)]

−
η

η + 1

[
α

α
(1 − α)

1−α
(GA · GN)

α
(
ξ
K,f
)−α

] η+1
(1−α)η

(
ξ
Y,f
) η+α

(1−α)η
(
ξ
C,f
)−1

,

where

ξ
F,f

= (1 − α)
1−α
η+α

[
β
−1 · GA · GN − (1 − δ)

]α( η+1
η+α

)
, ξ

H,f
= 1 − γL

(
RK

RS
− 1

)
, ξ

Y,f
=

ξH,f

ξF,f
,

ξ
K,f

= α(1 − α)
1−α
η+α · GA · GN ·

[
β
−1 · GA · GN − (1 − δ)

]− η(1−α)
η+α ξ

Y,f
,

ξ
C,f

= 1 − ζ
G − ξ

K,f

(
1 −

1 − δ

GA · GN

)
.
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ξC,f , ξY,f , and ξK,f are levels of ξC , ξY , and ξK when θ = 0 (i.e., flexible price steady
state). With

log
ξY

ξY,f
= log

(
1− θβΠϵ( η+1

η+α)

1− θβΠϵ−1

)
+

1

ϵ− 1

[
1 + ϵ

(
1− α

η + α

)]
log

(
1− θ

1− θΠϵ−1

)
, (C.28)

and

log
ξK

ξK,f
= log

(
ξY

ξY,f

)
+ log∆, (C.29)

log
ξC

ξC,f
= log

1− ζG − ξK
(
1− 1− δ

GA ·GN

)
1− ζG − ξK,f

(
1− 1− δ

GA ·GN

) , (C.30)

where ∆ at the steady state with trend inflation is defined in (A.32), which gives

log∆ = log

(
1− θ

1− θΠϵ( η+1
η+α)

)
+

ϵ

ϵ− 1

(
η + 1

η + α

)
log

(
1− θΠϵ−1

1− θ

)
. (C.31)

If we define logXc = c̃t− ĉt as the log-difference in consumption between our steady state
(with trend-inflation) and the flexible price steady state, we obtain

logXc ≡ c̄− c̄F =
1

η + 1

[
log

(
ξC

ξC,f

)
+

η + α

1− α
log

(
ξY

ξY,f

)]
. (C.32)

For labor, we define logXn as the log-difference in labor between our steady state with
trend inflation and the flexible price steady state, which is, with the help of (C.6), given by

logXn ≡ n̄− n̄F = −
α

1− α
log

ξK

ξK,f
+

1

1− α

(
η + α

η + 1

)
log

ξY

ξY,f
−

η

η + 1
log

ξC

ξC,f
+

η + α

(η + 1)(1− α)
log∆. (C.33)

With c̃t = ĉt+logXc, ñt = n̂t+logXn, and the stationarity assumption (following Coibion
et al. (2012)), we can get

E
[
c̃t − Φ

(
1−

(
η + 1

η

)
Θn

1

)
ñt

]
= logXc − Φ

(
1−

(
η + 1

η

)
Θn

1

)
logXn. (C.34)
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Second order terms: With ñt = n̂t + logXn, second-order terms can be collected as

− Φ

[
η + 1

2η
E
(
n̂2
t

)
+

η + 1

2η
(Θn

2 )
2E
((

Varν(ñt(ν))−∇
)2)− η + 1

η
Θn

2E
(
n̂t

(
Varν(n̂t(ν))−∇

))
+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2 − η + 1

η
Θn

2 logXn

)
E
(
Varν(n̂t(ν))−∇

) ]]
, (C.35)

which, after we can plug (C.26) into, becomes

− Φ

[
1

2

(
η + 1

η

)
Var (n̂t) +

1

2

(
η + 1

η

)
(Θn

2 )
2

(
ϵ

1 + α
η

)4

E(Dt − D̄)2

− η + 1

η
Θn

2

(
ϵ

1 + α
η

)2

Cov(n̂t, Dt)

+

(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

(
1 +

η + 1

η
logXn

))(
ϵ

1 + α
η

)2

E(Dt − D̄)

]]
. (C.36)

Finally, by plugging (C.18) into (C.36), we get the following proposition. Sine κD is of the
same order as shock processes, up to a second-order, we can ignore covariance terms and
the square term of Dt. Therefore, a 2nd-order approximation to the expected per-period
welfare would be given as

EUt − ŪF = Ω0 + ΩnVar(n̂t) + ΩπVar(π̂t), (C.37)

with

Ω0 = logXc − Φ

(
1−

(
η + 1

η

)
Θn

1

)
logXn +Φ

(
Θn

1 − 1

2

(
η + 1

η

)
(Θn

1 )
2

)
− Φ

1

2

η + 1

η
(logXn)

2

− Φ
1

2

(
η + 1

η

)( ϵ

1 + α
η

)2
D̄,

Ωn = −Φ
1

2

(
η + 1

η

)
, (C.38)

Ωπ = −Φ

[(
1

2

(
η + 1

η

)
(1 + 2Θn

1Θ
n
2 )−Θn

2

(
1 +

η + 1

η
logXn

))( ϵ

1 + α
η

)2 ZD

1− FD

]
,

where logXc and logXn are defined in (C.32) and (C.33) respectively, coefficients Θn
1 ,Θ

n
2

are given in equation (C.21), and D̄ is given by jointly solving (C.12) (i.e., definition of
Θp

1) and (C.19). κD, ZD, FD, GD, HD are given in (C.19).
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Supplementary Material: Not for Publication

1 Summary of Equilibrium Equations

1.1 Equilibrium Equations: Conventional Policy (CP)

(i).
Ct

AtN̄t
=
(
1− ζGt

)( Yt
AtN̄t

)
+

(
1− δ

GAt ·GN

)(
Kt

At−1N̄t−1

)
−
(
Kt+1

AtN̄t

)
(1.1)

(ii). 1 = β · Et

 RS
t+1

Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 (1.2)

(iii). λHB,1
t = 1−

F∑
f=2

λHB,f
t (1.3)

(iv). −

(
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t

AtN̄tPt
+

BCB,f

AN̄P

)
·
(
λHB,f
t

)−1
= γL ·

(
1 + ζF

)
·
(
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t

λK
t

)(
Yt

AtN̄t

)
, ∀f > 1

(1.4)

(v). Y D1
t = max

{
Y D1∗

t , 1
}

(1.5)

(vi). Y D1∗
t = Y D

1 ·
(
Πt

Π̄

)γπ (Yt
Ȳ

)γy

· exp
(
ε̃Y D1

t

)
(1.6)

(vii). λHB,f
t =



Et
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

κB

, ∀f

(1.7)

(viii). ΦB
t =
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Et
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1
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(1.8)

(ix). λK
t =

(
zKt Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS

(1.9)

(x). ΦS
t =
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Et

[
Qt,t+1R
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t+1

])κS
+
(
zKt Et

[
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K
t+1
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] 1

κS (1.10)
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(xi). Rj
t =

F−1∑
f=0
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t (1.12)
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(xvi).
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(
1− θ

1− θΠϵ−1
t

)( 1
ϵ−1)

[
1+ϵ

(
1−α
η+α

)]
(1.16)

(xvii). ∆t = (1− θ)

(
1− θΠϵ−1

t

1− θ

)( ϵ
ϵ−1)

(
η+1
η+α

)
+ θΠ

ϵ
(

η+1
η+α

)
t ∆t−1 (1.17)

(xviii).
Nt

N̄t
= (1− α)

(
η

η+α

)(
Ct

AtN̄t

)−α
(

η
η+α

)(
Yt

AtN̄t

)(
η

η+α

)(
PK
t

Pt

)α
(

η
η+α

)
∆

η
η+1

t (1.18)

(xix).
Kt

At−1N̄t−1
= α(1− α)

1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)−
(

η(1−α)
η+α

)
∆t

(1.19)

(xx).
BG

t

PtAtN̄t
=

RG
t

Πt ·GAt ·GN
·

BG
t−1

Pt−1At−1N̄t−1
−
[
ζGt + ζF − ζTt

]( Yt
AtN̄t

)
(1.20)

(xxi). λG,1
t =

1

1 +
F∑
l=2

aB,l exp
(
ũB,l
t

) , λG,f
t =

aB,f exp
(
ũB,f
t

)
1 +

F∑
l=2

aB,l exp
(
ũB,l
t

) , ∀f > 1 (1.21)

(xxiii). ũB,f
t =

J∑
j=1

τBfju
B,j
t (1.22)

(xxiv). uB,j
t = ρBu

B,j
t−1 + εB,j

t (1.23)

(xxv). BG,f
t = λG,f

t BG
t , ∀f = 1, . . . , F (1.24)

(xxvi). GAt = exp(µ+ εAt ) (1.25)

(xxvii). ζGt =
1

1 + aG exp
(
−uGt

) (1.26)

(xxviii). ζTt =
1

1 + aT exp
(
−uTt

) (1.27)

(xxix). uGt = ρG · uGt−1 + εGt (1.28)

(xxx). uTt = ρT · uTt−1 + εTt (1.29)
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1.2 Equilibrium Equations: Yield-Curve-Control Policy (YCC)

Summary of relevant equilibrium conditions:

(i).
Ct

AtN̄t
=
(
1− ζGt

)( Yt
AtN̄t

)
+

(
1− δ

GAt ·GN

)(
Kt

At−1N̄t−1

)
−
(
Kt+1

AtN̄t

)
(1.30)

(ii). 1 = βEt

 RS
t+1

Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
 (1.31)

(iii). −

(
λCB,1
t − λG,1

t

λCB,1
t − λHB,1

t

)
· BG

t

AtN̄tPt
= γL ·

(
1 + ζF

)
·
(
1− λK

t

λK
t

)(
Yt

AtN̄t

)
(1.32)

(iv). λCB,f
t =

λHB,f
t ·

(
1−

∑
i ̸={f,1} λ

CB,i
t − λG,1

t

)
− λG,f

t ·
(
1−

∑
i ̸={f,1} λ

CB,i
t − λHB,1

t

)
(
λHB,1
t + λHB,f

t

)
−
(
λG,1
t + λG,f

t

) , f = 2, . . . , F

(1.33)

(v). Y D1
t = max

{
Y D1∗

t , 1
}

(1.34)

(vi). Y D1∗
t = Y D

1 ·
(
Πt

Π̄

)γ1
π
(
Yt
Ȳ

)γ1
y

· exp
(
ε̃Y D1

t

)
(1.35)

(vii). Y DY CC,f
t = Y D

Y CC,f ·

(
Y DCP,f

t

Y D
CP,f

)γf
CP
[(

Πt

Π̄

)γf
π
(
Yt
Ȳ

)γf
y

· exp
(
ε̃Y Df

t

)]1−γf
CP

, f ≥ 2

(1.36)

(viii). λHB,f
t =



Et

 βzft
Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Df−1

t+1

)−(f−1)

(
Y Df

t

)−f


ΦB
t



κB

, ∀f

(1.37)

(ix). ΦB
t =

 F∑
j=1

Et

 βzjt
Πt+1 ·GAt+1 ·GN

(
Ct

AtN̄t

)
(

Ct+1

At+1N̄t+1

)
(
Y Dj−1

t+1

)−(j−1)

(
Y Dj

t

)−j


κB

1
κB

(1.38)

(x). λK
t =

(
zKt · Et

[
Qt,t+1R

K
t+1

]
ΦS
t

)κS

(1.39)
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(xi). ΦS
t =

[(
Et

[
Qt,t+1R

HB
t+1

])κS
+
(
zKt Et

[
Qt,t+1R

K
t+1

])κS
] 1

κS (1.40)

(xii). Rj
t =

F−1∑
f=0

λj,f+1
t−1

(
Y Df

t

)−f

(
Y Df+1

t−1

)−(f+1)
j ∈ {HB,G,CB} (1.41)

(xiii). RS
t =

(
1− λK

t−1

)
RHB

t + λK
t−1R

K
t (1.42)

(xiv). 1 = Et

[
Qt,t+1Πt+1

[
(1− δ) +

PK
t+1

Pt+1

]]
(1.43)

(xv). Ft = (1− α)
1−α
η+α

(
(1 + ςF )

−1ϵ

ϵ− 1

)(
Ct

AtN̄t

)−α
(

η+1
η+α

)(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)α
(

η+1
η+α

)
+ θβEt

[
Π

ϵ
(

η+1
η+α

)
t+1 Ft+1

]
(1.44)

(xvi). Ht =

(
Ct

AtN̄t

)−1 Yt
AtN̄t

[
1− γL ·

(
R̃K

t+1 − 1
)]

+ θβEt

[
Πϵ−1

t+1Ht+1

]
(1.45)

(xvii).
Ft

Ht
=

(
1− θ

1− θΠϵ−1
t

)( 1
ϵ−1)

[
1+ϵ

(
1−α
η+α

)]
(1.46)

(xviii). ∆t = (1− θ)

(
1− θΠϵ−1

t

1− θ

)( ϵ
ϵ−1)

(
η+1
η+α

)
+ θΠ

ϵ
(

η+1
η+α

)
t ∆t−1 (1.47)

(xix).
Nt

N̄t
= (1− α)

(
η

η+α

)(
Ct

AtN̄t

)−α
(

η
η+α

)(
Yt

AtN̄t

)(
η

η+α

)(
PK
t

Pt

)α
(

η
η+α

)
∆

η
η+1

t (1.48)

(xx).
Kt

At−1N̄t−1
= α(1− α)

1−α
η+α ·GAt ·GN ·

(
Ct

AtN̄t

) η(1−α)
η+α

(
Yt

AtN̄t

) η+1
η+α

(
PK
t

Pt

)−
(

η(1−α)
η+α

)
∆t

(1.49)

(xxi).
BG

t

PtAtN̄t
=

RG
t

Πt ·GAt ·GN

BG
t−1

Pt−1At−1N̄t−1
−
[
ζGt + ζF − ζTt

]( Yt
AtN̄t

)
(1.50)

(xxii). ε̃Y D,f
t =

L∑
l=1

τY D
fl εY D,l

t (1.51)
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1.3 Summary of Conventional Policy Linearized Equations

Those are the essential equations to solve the model, other variables can be found on the
equations above.

(i). ŷt = Et

[
ŷt+1 +Ψ46 · π̂t+1 −Ψ47 ·

−→
ẑ t −Ψ48 · ẑKt −Ψ49 ·

−→
ŷdt −Ψ50 · Et

[−−−→
ŷdt+1

]
−Ψ51 · r̂Kt+1 −Ψ52 · (k̂t − ε̂At ) + Ψ53 · k̂t+1 −Ψ54 · k̂t+2 +Ψ55 · ûGt

]
(ii).

−→
ŷdt = Θ14 · b̂Gt −Θ15 · ŷt +Θ16 · r̂Kt+1 −Θ17 · Et

[−−−→
ŷdt+1

]
−Θ18 ·

−→
ẑt +Θ19 · ẑKt +Θ20 ·

−→
ûBt

(iii). ŷd
1

t = max
{
ŷd

1∗
t , 0

}
(iv). ŷd

1∗
t = γππ̂t + γyŷt + ε̃Y D1

t , ε̃Y Df

t =

L∑
l=1

τY D
f,l εY Dl

t

(v). r̂Kt+1 =−Ψ37 ·
−→
ẑt −Ψ38 · ẑKt −Ψ39 ·

−→
ŷdt −Ψ40 · Et

[−−−→
ŷdt+1

]
+Ψ41 · Et [π̂t+1] + Ψ42 · Et [ŷt+1]

+ Ψ43 · k̂t+1 −Ψ44 · Et

[
k̂t+2

]
−Ψ45 · ûGt

(vi). b̂Gt =
RG

Π ·GA ·GN
·
[
ΨG,4Ξ

−−→
ûBt−1 −ΨG,5

−→
ŷdt +ΨG,6

−−−→
ŷdt−1 − π̂t − ε̂At + b̂Gt−1

]
+

(
1− RG

Π ·GA ·GN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)
aG

1 + aG
ûGt −

(
ζT

ζG + ζF − ζT

)
aT

1 + aT
ûTt

]
(vii). f̂t =−Ψ16 ·

−→
ẑt −Ψ17 · ẑKt −Ψ18 ·

[
k̂t − ε̂At

]
+Ψ19 · ŷt −Ψ20 ·

−→
ŷdt −Ψ21 · r̂Kt+1 −Ψ22 · Et

[−−−→
ŷdt+1

]
+Ψ23 · Et [π̂t+1] + Ψ24 · Et

[
f̂t+1

]
(viii). ĥt =Ψ26 ·

−→
ẑt +Ψ27 · ẑKt −Ψ28 ·

[
k̂t − ε̂At

]
+Ψ29 · ûGt +Ψ30 · ŷt +Ψ31 ·

−→
ŷdt −Ψ32 · r̂Kt+1

+Ψ33 · k̂t+1 +Ψ34 · Et

[−−−→
ŷdt+1

]
+Ψ35 · Et [π̂t+1] + Ψ36 · Et

[
ĥt+1

]
(ix). f̂t − ĥt =

[
1 + ϵ

(
1− α

η + α

)](
θΠϵ−1

1− θΠϵ−1

)
π̂t

(x). uB,j
t = ρB · uB,j

t−1 + εB,j
t , ∀ j = 1, . . . , J

(xi). uGt = ρG · uGt−1 + εGt

(xii). uTt = ρT · uGt−1 + εTt
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1.4 Summary of Yield-Curve-Control Policy Linearized Equations

Those are the essential equation to solve the model, other variables can be found on equa-
tions above.

(i). ŷt = Et

[
ŷt+1 +Ψ46 · π̂t+1 −Ψ47 ·

−→
ẑ t −Ψ48 · ẑKt −Ψ49 ·

−−−−→
ŷd

Y CC

t −Ψ50 · Et

[−−−−→
ŷd

Y CC

t+1

]
−Ψ51 · r̂Kt+1 −Ψ52 · (k̂t − ε̂At ) + Ψ53 · k̂t+1 −Ψ54 · k̂t+2 +Ψ55 · ûGt

]
(ii).

−−−→
ŷd
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t = Θ14 · b̂Gt −Θ15 · ŷt +Θ16 · r̂Kt+1 −Θ17 · Et

[−−−−→
ŷd
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t+1

]
−Θ18 ·

−→
ẑt +Θ19 · ẑKt +Θ20 ·
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(iii). ŷd
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{
ŷd

1∗
t , 0

}
= ŷd

CP,1

t

(iv). ŷd
1∗
t = γππ̂t + γyŷt + ε̃Y D1

t , ε̃Y D1

t =

L∑
l=1

τY D
1,l εY Dl

t ,

(v). ŷd
Y CC,f

t = γfCP ŷd
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t +
(
1− γfCP

) [
γfπ π̂t + γfy ŷt + ε̃Y Df

t

]
, ε̃Y Df

t =
L∑
l=1

τY D
f,l εY Dl

t , f ≥ 2

(vi). r̂Kt+1 =−Ψ37 ·
−→
ẑt −Ψ38 · ẑKt −Ψ39 ·

−→
ŷdt −Ψ40 · Et

[−−−→
ŷdt+1

]
+Ψ41 · Et [π̂t+1] + Ψ42 · Et [ŷt+1]

+ Ψ43 · k̂t+1 −Ψ44 · Et

[
k̂t+2

]
−Ψ45 · ûGt

(vii). b̂Gt =
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Π ·GA ·GN
·
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ΨG,4Ξ
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ûBt−1 −ΨG,5

−−−−→
ŷd
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ŷd
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t−1 − π̂t − ε̂At + b̂Gt−1

]
+

(
1− RG

Π ·GA ·GN

)[
ŷt +

(
ζG

ζG + ζF − ζT

)
aG

1 + aG
ûGt −

(
ζT

ζG + ζF − ζT

)
aT

1 + aT
ûTt

]
(viii). f̂t =−Ψ16 ·

−→
ẑt −Ψ17 · ẑKt −Ψ18 ·

[
k̂t − ε̂At

]
+Ψ19 · ŷt −Ψ20 ·

−→
ŷdt −Ψ21 · r̂Kt+1 −Ψ22 · Et

[−−−→
ŷdt+1

]
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[
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]
(ix). ĥt =Ψ26 ·

−→
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[
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]
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[
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]
(x). f̂t − ĥt =

[
1 + ϵ

(
1− α

η + α

)](
θΠϵ−1

1− θΠϵ−1

)
π̂t

(xi). uB,j
t = ρB · uB,j

t−1 + εB,j
t , ∀ j = 1, . . . , J

(xii). uGt = ρG · uGt−1 + εGt

(xiii). uTt = ρT · uGt−1 + εTt
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2 Additional Results: Steady-State Comparative Statics

Comparative statics with κB Figure 2.1 demonstrates the behavior of the steady-state
yield curve as κB increases, as explained in Section 2.1.1. With RK > RHB at the steady
state and low levels of zf for high f in Figure 1.1, an increase in κB lowers the household’s
demand for long-term bonds (as markets are more competitive with higher κB), pushing up
long-term yields. When κB → ∞, we revert to the expectations hypothesis case, resulting
in a flat yield curve in the steady-state.
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Figure 2.1: Variations in κB (i.e., scale parameter): as κB → ∞, the model converges
to the expectation hypothesis, wherein all discounted expected returns become equalized.
With current RK > RHB at the steady state and low levels of zf for high f in Figure 1.1,
higher κB lowers the household’s demand for long-term bonds, pushing up their yields.

Comparative statics with zK Figure 2.2 illustrate comparative statics with respect to the
scale parameter zK , which is incorporated into the savings allocation between the Treasury
and loan markets (i.e., (6)). Given the calibrated {zf}Ff=1 and for zK ∈ [0.8, 1.3], a higher
zK suggests that the household is more inclined to provide loans to firms rather than invest
in the bond market, raising λK . This leads to higher capital, output, and consumption in the
steady-state allocation. As households increase their loan investment, the average marginal
propensity to consume and the equilibrium loan rate RK decline, causing the entire yield
curve to shift downward due to the household’s endogenous portfolio reallocation —para-
doxically raising credit spreads. Falling RG lowers the government bond share with respect
to GDP.
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Figure 2.2: Variations in zK

Comparative statics with κS Figure 2.3 depicts comparative statics of the shape parame-
ter κS , which appears in the same savings allocation condition between bond and loan mar-
kets (i.e., equation (6)). Given the calibrated {zf}Ff=1 and zK values, and for κS ∈ [0, 25],
a higher κS raises λK , as RK > RHB at the steady state and higher κS implies that the
market is more competitive. This results in a lower loan rate RK , higher capital demand (as
firms face lower interest costs), increased output and consumption while reducing the aver-
age marginal propensity to consume. Credit spreads widen, with a lower RK depressing the
government’s effective bond return RG and the entire yield curve even more. Consequently,
the government’s debt-to-GDP ratio falls.
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Figure 2.3: Variations in κS
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3 Additional Results: Impulse-Responses

3.1 Without ZLB

Technology shock, εAt : Figure 3.1 displays the impulse-responses to a εAt shock. A pos-
itive shock in technology growth GAt yields similar effects as documented in prior litera-
ture under conventional policy,10 with output increasing11 as inflation decreases. Under the
yield-curve-control regime, the normalized output decreases less: since inflation falls, bond
yields shift downwards, boosting consumption and reducing both the return on capital and
the wage.
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Figure 3.1: Impulse response to a εAt shock: A positive technology growth shock generates
effects in line with the existing literature, resulting in an increase in output and a decline in
inflation. As inflation decreases, all yields undergo a downward shift, which in turn lowers
both the capital return and wage relative to the conventional scenario.

10For effects of technology shocks in a canonical New-Keynesian model, see Ireland (2004).
11Even if the ‘normalized’ output drops under our calibration, the output level rises.
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Monetary policy shock, εY D1

t : Figure 3.2 presents the impulse-response to a εY D1

t shock.
Under the conventional policy, a contractionary monetary policy shock paradoxically re-
sults in an increase in output, inflation, and capital. One potential channel is from increases
in the household’s interest incomes from higher rates on both bonds and loans. The yield-
curve-control policy insulates the economy as before: in response to the shock, the central
bank pushes down the entire yield curve, preventing input prices (i.e., loan rates and wages)
from rising too high, and thereby mitigating changes in output and inflation.
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Figure 3.2: Impulse response to a εY D1

t shock: A conventional contractionary monetary
policy shock paradoxically leads to increases in output, inflation, and capital due to higher
amounts of interest incomes that households earn from bonds and loans. The yield-curve-
control policy insulates the economy against the shock through the central bank’s purchases
of long-term bonds.
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3.2 With ZLB

With mixed policy, zKt : In Figure 3.3, the mixed policy actually features the longest ZLB
spell.
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Figure 3.3: Impulse-response to zK shock with ZLB: with mixed policy
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